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Sr, Nd and Pb isotopic analysesof 477 samples representing 30 islands or
island groups, 3 seamounts or seamount chains, 2 oceanic ridges and I oceanic
plateau [for a total of 36 geographic features] are compiled to form a
comprehensive oceanic island basalt [OIB data set. These samples are
supplemented by 90 selected mid,6cean ridge basalt [MORBI samples to give
adequate representation to MORB as an oceanic basalt end-member. This
comprehensive data set is used to infer information about the Earth's mantle.
Principal component analysis of the OIB+MORB data set shows that the first
three principal components account for 97.5% of the variance of the data. Thus,
only four mantle end-member components [EMI, EMIl, I1MU and DMM1 are
required to completely encompass the range of known isotopic values. Each
sample is expressed in terms of percentages of the four mantle components,
assuming linear mixing.. There is significant correlation between location and
isotopic signature withingeographic features, but not between them, so
discrimination analysis of the viability of separating the oceanic islands into those
lying inside and outside Hart's (1984. 1988) DUPAL belt is performed on the
feature level and yields positive results.

A ;'continuous layer moder' is applied to the mantle component percentage
data to solve for the spherical harmonic coefficients using approximation
methods. Only the degrees 0-5 coefficients can be solved for since there are only
36 features. The EMI and HIMU percentage data sets must be filtered to avoid
aliasing. DR to the nature of the data, the coefficients must be solved for using
singular valuA',Oecomposition [SVD], versus the least squares method. The F-test
provides an objective way to estimate the number of singular values to retain
when solving with SVD. With r'y"t .t -behavior of geophysics control data

ji
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sets, only the degree 2 spherical harmonic coefficients for the mantle components
can be estimated with a reasonable level of confidence with this method.

Applying a "delta-function model" removes the problem of aliasing and
simplifies the spherical harmonic coefficient solutions from integration on the
globe to summation over the geographic features due to the prope-ties of delta-
functions. With respect to the behavior of geophysics control data sets, at least
the degree 2 spherical harmonic coefficients for the mantle components can be
estimated with confidence, if not the degrees 3 and 4 as well. Delta-function
model solutions are, to some extent, controlled by the nonuniform feature
distribution, while the continuous layer model solutions are not.

The mantle component amplitude spectra, for both models, show power at
all degrees, with no one degree dominating. The DUPAL components [EMI,
EMIl and HIMU], for both models, co.,elate well with the degree 2 geoid,
indicating a deep origin for the components since the degrees 2-3 geoid is
inferred to resilt from topography at the core-mantle boundary. The DUPAL
and DMM components, for both models, correlate well [and negatively] at degree
3 with the velocity anomalies of the Clayton-Comer seismic tomography model
in the 2500-290, km depth range [immediately above the core-mantle boundaryl.
The EMIl component correlates well [and positively] at degree 5 with the
velocity anomalies of the Clayton-Comer model in the 700-1200 km depth range,
indicating a subduction related origin. Similar positive correlations for the geoid
in the upper lower mantle indicate that subducted slabs extend beyond the 670
km seismic discontinuity and support a whole-mantle convection model.

Thesis Supervisor: Dr. Stanley R. Hart
Title: Senior Scientist, Woods Hole Oceanographic Institution
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CHAPTER 1

INTRODUCTION

PREVIOUS WORK

That the Earth's mantle is heterogeneous is no longer a subject of

controversy among geochemists, but the composition, the location and the

geometry of these heterogeneities is very much in question. Direct sampling is

not an option for studying the chemistry of most of the mantle, so products of

indirect sampling, such as oceanic island basalts [OIB's] and mid-ocean ridge

basalts [MORB], are invaluable for revealing the nature of the inaccessible

mantle. Though the OIB's may be contaminated by interactions with the

lithosphere or may sample large vertical sections of the mantle, they still retain

the signature of their original source.

Using various statistical methods and models, previous workers have

defined what they believe to be the number of mantle component end-members

required to represent the variation in the oceanic mantle data [OlB+MORB j.

Early on, Zindler et al. (1982) used factor analysis to evaluate the oceanic data in

five dimensions. Their analysis indicated that the oceanic data define a plane I the

"mantle plane"], described by the mixing of three chemically independent

components, two undifferentiated or slightly enriched mantle components and

one MORB-type or depleted mantle component.

Other workers have chosen five groups or components to represent the

data. Using a series of two-dimensional isotopic plots, White (1985) divided the

oceanic data into five distinct basalt groups [MORB, St. Helena, Kerguelen,

Society, and Hawaii]. He concedes that the five groups may be end-members

which mix to form intermediate compositions, but he believes that each group

either represents a distinct, internally homogeneous reservoir or that each group
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is composed of a number of isotopically similar reservoirs. Likewise, Li et al.

(1991) proposed fives extremes, using non-linear mapping: Atlantic MORB

[DMMJ, St. Helena [HIMU], Walvis [EMIl, Samoa [EMII] and D5 [EMIIII. Non-

linear mapping approximately preserves the geometric structure of the data by

maintaining interpoint distances. Four of the five extremes of Li et al. (1991)

are based solidly oni samples trends from islands, but the D5 extreme is based

only on that one sample. More data is needed to substantiate their fifth extreme.

By far the majority of analyses indicate the existence of four end-member

components for the oceanic mantle data. Using two-dimensional plots, Zindler

and Hart (1986) defined the following four end-member components: depleted

MORB mantle [DMMJ, high U/Pb mantle [HIMU], and two enriched mantle

components [EMI and EMII], with possibly two other components prevalent

mantle composition [PREMAJ and bulk silicate Earth [BSE]. Eigenvector

analyses by A1l6gre et al. (1987) agree with the four component model of

Zindler and Hart (1986). The four extremes of Al1~gre et al. (1987) are

[correspond to]: extreme MORB [DMM]; St. Helena, Tubuaf and Mangai islands

IHIMUI; Kerguelen, Gough, Tristan da Cunha and Raratonga islands IEMIl; and

Sio Miguel and Atui islands [EMII]. Hart (1988), using an augmented data set

and two-dimensional plots, concluded that the four end-members proposed by

Zindler and Hart (1986) are valid representations of the extremes of the oceanic

data. Fie resolves White's (1985) groupings into his own four component system

as follows [White = Hart]: MORB = DMM, Society = EMIl, St. Helena = HIMU,

Hawaii = EMI, with the suggestion that White's fifth group, Kerguelen, is a

mixture of EMI and EMIl. In addition, Li et al. (1991) also noted a tetrahedral

structure to the data, when using factor analysis with varimax rotation, with the

following four extremes: Atlantic MOtRR IrMM], Mangaia [H!IMU, Sanoa

[EMIIf and Walvis[EMI].
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One scenario for the genesis of the three unusual mantle components is put

forth by Hart (1988). He proposes that HIMU, enriched in U, is probably

generated by intra-mantle metasomatism, that EMI corresponds to a slightly

modified bulk-earth compositon and that EMII can be explained by the recycling

of sediments during subduction. The proposed formation mechanisms in no way

limit the geometry of the mantle needed to generate the heterogeneities and, as

such, a wide variety of models have been proposed. A whole mantle convection

model might portray the enriched mantle components as blobs floating around in

a depleted mantle matrix (Zindler and Hart. 1986) or perhaps as an accumulated

layer of subducted oceanic crust and sediment at the core-mantle boundary that

reaches the surface in mantle plumes (Hofmann and White, 1982). A two-layer

convection model might rely on a depleted upper mantle feeding the mid-ocean

ridges and an enriched lower mantle teeding oceanic islands via mantle plumes

(Dupre and Allkgre, 1983) or require a depleted upper mantle, a primitive lower

mantle and an accumulated layer of subducted oceanic crust and sediment at the

670 km discontinuity that supplies the enriched components via mantle plumes

(White, 1985; AII gre and Turcotte, 1985). Anderson (1985) even proposes a

three-layer convective model with the geochemical contras.s occurri, g c,.ly in

the upper mantle with a depleted lower part that supplies the mid-ocean ridges

and an enriched upper part from subduction of oceanic crust and sediment.

A deep origin for the enriched components is indicated by [lart's (1984)

large-scale isotopic anomaly, the DUPAL anomaly, characterized by the

concentration of the enriched mantle components in a band from 2' S to 60' S.

Qualitatively, countours of the anomaly criteria [A7/4, A8/4 and ASr (Hart,

1984)] correspond to long-wavelength [and thus deepi geophysical quantities

(Hart, 1988). Other researchers oppose this deep origin interpretation, citing the

nonuniform distribution of hotspots as the reason for the pattern (White, 1985)
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or arguing that the DUPAI. compositions occur in scattered locations ard do not

cover a coherent geographic area (A~lgre et al., 1987).

The purpose of this thesis is three-fold: (I) to address once again the issue

of the number of mantle end-member components needed to represent the

oceanic mantle data, (2) to statistically test the viability of the DUI Al, distinction

as a means of characterizing the OIB data and (3) to try to pinpoint the source

depth of the enriched mantle components by expanding their relative abundances

ill spherical hamlonics and comparing their expansions to those of known

geophysical quantities.

DATA

The majority of this study focuses on Sr, Nd and Pb isotopic analyses of

volcanic rocks from oceanic islands, seamounts. iidges, and plateaus. Al of

these geographic features overlie oceanic crust, with the exception of Nunivak

Island on the Alaskan Continental Shelf, and none of them is directly associatcd

with seafloor spreading, with the exception of Iceland, which has a mixture of

mid-ocean ridge and hotspot influences. Essentially, the data set is that compiled

bv Zindler et a. (1982) and later augmented by Hart (1988), with some

additional recent analyses (Appendix). Samples in the data set are mainly basalt.

with some gabbros and trachybasalts, trachytes and other silica-rich rocks

relative to basalt Iroughly SiO 2 > 50%1 are excluded. The majority of the

samples are of Cenozoic age, with the exception of the Walvis Ridge, Rio Grande

Rise and New England Seamounts samples, with ages up to 100 Ma. If a choice

is given, analyses of leached samples are preferred over analyses of unleached

samples. In addition, only single samples for which there are Sr, Nd and Pb

analyses are included. For consistency, Sr data is adjusted to 0.708(X) E&A

standardj or 0.71022 [N1S SRM 987 standard] and Nd data is adjusted to
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0.512640 [13CR-1 standard I or 0.511862 1 La Jolla standard] or 0.511296 ISpex

standard 1.

In this data set, referred to as the OIB data set, there are 477 samples

representing 30 islands or island groups, 3 seamounts or seamount chains, 2

aseismic oceaic ridges and 1 oceanic plateau (Figure 1.1 and Table 1.1). The

isotopic means and standard deviations for the OIB data are listed in Table 1.2.

Since MORB is considered to be one of the mantle component end-

members (Zindler et al., 1982; White, 1965; Zindler and Hart, 1986; Hart,

1988), any attempt to choose end-rnembers should include MORB data. For this

reason, a second data set is created using the OIB data and a selection of 9()

MORB samples (Appendix), the 0113+MORB data set (Table 1.3). The criteria

for chosing OIB samples applies to the MORB samples as well. Isotopic means

and standard deviations for the OIB+MORB data are listed in Table 1.2.

ORGANIZATION

The main thust of this work is to characterize the OIB data and to search

for possible correlations between the geochemical signatures of OIB's and

geophysical quantities, such as the geoid and seismic tomography, that might help

pinpoint the depthfs] of the 0113 reservoirts].

Chapter 2 explores the nature of the OIB isotope data. With tile help of

principal component analysis, the data is expressed in terms of percentages of

four mantle component end-members. Spatial correlation testing reveals the

relationship between geographic distance from island to island and feature to

feature and the "isotopic distance" between samples. Discrimination analysis,

both nearest-neighbor and graphical, is used to test the viability of separating the

oceanic islands into two groups, inside and outside the DUPAL belt.
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Chapter 3 applies a "continuous layer model" to the mantle component

data, as an assumed geometry for the OIB reservoir, in orJer to solve for the

spherical harmonic coefficients. The problem of aliasing is addressed with the

relationship of variation in mantle components to distance between features.

Approximation methods are used to solve for the coefficiepts. Geophysical data

sets are constructed, using GEM-L2 geoid coefficients, to serve as controls

against which to judge the success of the approximation methods.

Chapter 4 applies a "delta-function model" to the mantle component data

to provide a mathematically more robust solution for the spherical harmonic

coefficients. The delta-function approximation removes the problem of alilsing.

but generates a solution dependent upon feature location. The same geophysical

data sets are used again to judge the success of the delta-function approximation.

Chapter 5 compares the mantle component spherical harmonic solutions

for the two models in terms of their amplitude spectra, how well they correlate

with the geoid, how they are affected by the nonuniform feature distribution ard

how well they correlate with the Clayton-Comer seismic tomography model.

The implications of these results and recommendations for further research are

discussed.
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Table 1.1. Geographic features represented in the OIB data set, with their
components, number of samples [in braces] and references indicated.

Feature Components References 1

Ascension [5] 7,34,35
Amsterdam/St. Paul [11

Amsterdam [5] 38
St. Paul [61 38

Azores 16]
Faial [1] 22
Sdo Miguel [5] 1,8

Balleny 13] 19
Cameroon Line 18]

Bioko [5] 17,18
Pagalu [1] 18
Principe [3] 18
Sao Tom6 [9] 17,18

Cape Verde Islands [411
Fogo [61 14
Maio 19] 8,14
Sao Antao [10] 8,14
Sao Tiago [13] 14
Sao Vincente [31 14

Christmas [131 19
Cocos [3] 3
Comores Archipelago [14] 38
Cook-Austral Islands [261

Aitutaki [4] 1,21
Atui [6] 1,21
Mangia 151 1,21
Mauke [3] 1,21
Raratonga [8] 1,21,23

Crozet Islands [9] 38
Fernando de Noronha [16] 1,13
Galapagos Islands [ 11] 39
Gough [2] 1
Hawaiian Islands [73]

Hawaii [141 28,32
Kahoolawe [13] 37
Kauai 121 28
Lanai [4] 37
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Table 1.1. Continued.

Feature Components References

Hawaiian Islands [73]
Loihi 115] 27
Maui [3] 28
Molokai [5] 28
Oahu [171 29

Iceland [7] 20
Juan Fernandez Islands [41 15
Kerguelen Plateau 1411

Heard Island [9] 2,30
Kerguelen Island [20] 12,30,38
Kerguelen Plateau [12] 26,36

Louisville Seamount Chain [4] 6
Marion/Prince Edward 141 19
Marquesas Archipelago [ 11] 10,11,33
Mascareignes [8]

Mauritius [11 1
Reunion [71 38

New England Seamounts [61 31
'Nunivak [2] 25
Pitcairn [19] 41
Ponape [1] 19
Sala Y Gomez fI] ?
Samoa Islands [34]

Manu'a [41 42
Savai'i [81 42
Tutuila [9] 23.42
Upolu 113] 23,42

San Felix/San Ambrosio [51
San Felix [41 15
San Ambrosio[ 1] 15

Shimada Seamount [1] 16
Society Ridge [9]

Mehetia [2] 9
Moua Pihaa [ 1 9
Tahaa 1] 40
Teahitia [4] 9
dredge [ 1 9

St. Helena (311 ?,1,4,7,22
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Table 1.1. Continued.

Feature Components References

Trinidade [I ]
Tristan de Cunha [5] 7,22
Tubuai-Austral Islands [22]

Marotiri [ 1] 5
Raevavae [1]
Rapa [31 5,23
Rimatara [4] '?,21
Rurutu [4] 21,23
Tubuai [9] 5

Walvis Ridge [101 24

1 In the reference column, a '?" indicates a sample with an unknown reference.

Reference guide: I 1 Allgre et al., 1987; [2] Barling and Goldstein, 1990; 131
Castillo et al., 1988; 14] Chaffey et al., 1989; [5] Chauvel et al., 1991; 161 Cheng
et al., 1988; [7] Cohen and O'Nions, 1982a; [8] Davies et al., 1989; [91 Devey et
al., 1990; [10] Duncan et al., 1986; [11] Dupuy et al., 1987; 1121 Gautier et at.,
1990; [13] Gerlach et al., 1987; [14] Gerlach et al., 1988; [15] Gerlach et al.,
1986; [161 Graham, 1987; [17] Halliday etal., 1990; [18] Halliday et al., 1988;
[191 Hart, 1988; [20] Hart, unpublished; [211 Nakamura and Tatsumoto, 1988;
[22] Newsom et al., 1986; [23] Palacz and Saunders, 1986; [24] Richardson et al.,
1982; [251 Roden, 1982; [26] Salters, 1989; [27] Staudigel et al., 1984; [28] Stille
et al., 1986; [29] Stille et al., 1983; [301 Storey et al., 1988; [31] Taras and Hart,
1987; 132] Tatsumoto, 1978; [33] Vidal et al., 1984; [34] Weis, 1983; 1351 Weis ei
al., 1987; [36] Weis et al., 1989; [37] West et al., 1987; [381 White, unpublished:
[391 White and Hofmann, 1982; 1401 White et al., 1989; 1411 Woodhead and
McColloch, 1989; [421 Wright and White, 1987.
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Table 1.2. Isotopic means and standard deviations 1 for the OIB and the
OIB+MORB data sets.

Sr Nd 6/4Pb 7/4Pb 8/4Pb

OIB2

Mean 0.703943 0.512825 19.065 15.586 38.965
Std Dev 0.000892 0.000145 0.880 0.093 0.693

OIB+MORB
3

Mean 0.703752 0.512869 18.939 15.571 38.799
Std Dev 0.000936 0.000170 0.870 0.093 0.748

1lsotopic variance is the square of the standard deviation.
2 Mean and standard deviation based on 477 samples.
3 Mean and standard deviation based on 567 samples.
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Table 1.3. Sample locations for the MORB data in the OIB+MORB daut set.
with the number of samples [in braces] and references indicated.

Location References

Atlantic Ocean 122] 2,5

Pacific Ocean
East Pacific Rise [6] 5,7
Galapagos Ridge [ 13] 5,7
Gorda Ridge [8] 7
Juan de Fuca Ridge [6] 7

Indian Ocean [10] 1,5
E Indian Ridge [71 4
SE Indian Ridge [121 6
SW Indian Ridge [6] 3

Reference guide: [1] Cohen and O'Nions, 1982b; [21 Cohen et al., 1980; 131
Hamelin and All~gre, 1985; [41 Hamelin et al., 1986; [51 Ito et al., 1987: 161 Klein
et al., 1988; 171 White et al., 1987.
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CHAPTER 2

MATHEMATICAL AND STATISTICAL METHODS OF DATA ANALYSIS

INTRODUCTION

When dealing with a multidimentional data set with dimension greater

than three, it is impossible to visualize the shape of the data in that space. This

makes it difficult to choose "end-members" for the data, where end-members are

interpreted as the vertices of the smallest simplex, with linear or nonlinear edges,

that completely enicloses all the data points. Previous work using two-

dimensional plots to estimate the groups or end-members (Zindler et al.- 1982;

White, 1985; Zindler and Hart, 1986) can be misleading since those plots are

projections of a higher-dimensional shape. For this study. it is possible to reduce

the dimcnsionality of the OIB+MORB data set, via principal component analysis,

and still retain its general shape, making it possible to choose end-members in

three-dimensions.

For the OIB data set, the data locations [oceanic islands] are not distributed

evenly about the globe. This prompts the question as to whether there is any

relationship between location and isotopic signature. To address this, a spatial

correlation test (Mantel, 1967) is used to test for a correlation between the

geographic distance and the "isotopic distance" between samples. In addition, a

count is kept of the number of times a sample's isotopic "nearest-neighbor"

occurs within the same island and within the same geographic feature.

Finally, the globe has been divided by Hart (1984, 1988) into the islands

lying inside the DUPAL belt, from 2' S to 600 S, and those lying outside. To see

if there is statistical justification for separating the data into these two different

populations, isotopic nearest-neighbor discriminant analysis is performed on the

data set to obtain a misclassification error rate. The significance of this error
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rate is based upon a randomization test of Solow (1990). While giving

promising results, the randomization test for significance is inconclusive because

spatial correlation within geographic features has not been accounted for. As an

alternative, discrimination between isotopic signatures on the scale of geographic

features inside and outside the DUPAL belt is addressed graphically.

PRINCIPAL COMPONENT ANALYSIS

Theory

Principal component analysis can be viewed as a coordinate system

transformation, but one that has particular properties. It generates a new set of

variables, the principal components, that are linear combinations of the original

variables:
5

Zi = eij Xj i = 1...,5
j-I

where the Zi's are the principal components, the eij's are the transformation

coefficients, and the X 's are the original isotope measurements (X1  = 8 7 Sr/ 8 6 Sr,

X2 = 14 3 Nd/ 14 4 Nd, X3 = 206Pb/ 2 0 4 Pb, X4 = 20 7 Pb/2 0 4 Pb, X5 = 2 0 8pb/ 204Pb).

The principal components have the following properties:

(1) Z i and Z are uncorrelated, for all ij

(2) Variance(Z 1 ) > Variance(Z 2 ) _>... > Variance(Z 5 )
5

(3) for all i, L e2 = I
j=!

The transformation coefficients are the elements of the unit eigenveclors of the 5

x 5 data covariance matrix. Because the isotopic ratios are on different scales,

the data set must be normalized in order for all of the isotopes to be treated
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equally in the analysis. One way to do this is to take each sample and for every

isotope subtract the mean and divide by the standard deviation (Table 1.2):

y Xij- Xj

where Xij is thejth isotopic ratio for the ith, ,mple, etc. This method weights

the information provided by all five isotopes equally. Alternatively, AIlgre Ct

al. (1987) develop their own empirical norm, the "geologic norm", that takes

analytical errors into account and is designed to give equal weight to ill isotopes

except 2 0 7 Pb/2 04Pb, which has the largest analytical error.

Application to the OIB+MORB Data Set

Because DMM (depleted MORB mantle] is one of the proposed mantle

end-member components, I have chosen to do principal component anlsis using

all of the oceanic island data [477 samples] plus a wide selection of MOR13 datl

[90 samples]. The covariance matrix for the OIB+MORB data set and its

eigenvectors and eigenvalues are shown in Table 2.1. The sum of the

eigenvalues is the trace of the covariance matrix, ie. the sum of the diargonal

elements. This is equal to 5 because the diagonal elements of the covariance

matrix, the scaled isotope variances, are all 1. To find out how much of ihe

variance of the scaled data set is accounted for by each eigenvector. ind thus each

principal component, divide the corresponding eigenvalue by 5. The first three

principal components account for 97.5% of the variance of the data set.

Therefore it is reasonable to use the three-dimension principal component data

set to select end-member components. This has important implications for the

OIB+MORB data set. In n-dimensional space, the polygon containing the fewest
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vertices 1n+11 is a simplex. Thus, the OIB+MORB data set would require six

end-member components to completely define it, if it spanned the entire five-

dimensional space. The fact that it can be adequately represented in three-

dimensions implies that the OIB+MORB data set requires only four end-member

components.

A comparison of eigenvalues and corresponding percentages of variance

from this study and from AlI:gre et al. (1987) for OIB-+ MORB and 0113 data

sets is presented in Table 2.2. It should be noted that the OIB eigenvalues from

this study are found using a separate covariance matrix derived from the 477

0113 samples alone. as is done by A1ligre et al. (1987). Their analysis yielded

similar reults for a three-dimensional fit to the data IOIB+MORI3: 99.2c(/ versus

97.5: 013: 9 8. 8 / versus 97.3%!. Part of the small difference that does exist

may be due to the fact that they used a smallei data set [OIB+MORB: 91 samples

versus 567 samples; OIB: 53 samples versus 4771, in addition to itle different

methods used to scale the data.

The procedure outlined above for computing principa! components is

compacted into matrix form. Z EY, with exact solutions:

Z21 ....... z '7 . Ye1 .. .. N
Z-)I ....... Zl 12 c13 e14 ( 15  Y",l ....... Y ,,

Z11 . . . . . . . Z3,. . . . . . . . . . . . . . .  Y-31 ....... 1A

/5I .......... \ Ys.I .......

where N the number of samples [5671, the Yiis are the normalized isotopic

values and the eigenvectors are the rows of the matrix E. Three two-

dimensional plots of the first three principal components, with general end-

member regions indicated, (Figs. 2.1, 2.2 and 2.3) are presented for comparison

with those of Allkgre et al. (1987) (Fig. 2.4). Plotting the principal component



27

values for the samples versus each other is the same as plotting the projection of

the OIB+MORB population onto its eigenvector planes as they have done. The

two sets of plots are very similar, but mirror images of each other. This is

simply because the eigenvectors used were of opposite sign, in no way affecting

the validity of either set of plots.

Mantle End-Niember Components

In three-dimensional space the principal component data form a

tetrahedron (Fig. 2.5). It should be noted that the tetrahedron is not aligned withl

the principal component axes, so two-dimensional plots of the principal

component data do not give an exact indication of the location of the extreme

points. End-member component values are chosen by eye at the extremes of the

tetrahedron using a rotating three-dimensional plotting program.

First, the "nonlinear" end-member points are chosen, those that just form

the vertices of the tetrahedron (Table 2.3). These end-members are referred to

as "nonlinear" because they define the vertices of the smallest simplex enclosing

the data points which has linear and nonlinear edges. In geometry, a simplex is

defined as a polygon with planar faces, but I am extending this definition to

encompass polygons containing nonplanar faces as well. The purpose of

choosing particular end-member points is to be able to express all of the sample

points as a combination of the four end-member components, for later use in

spherical harmonic expansions. Though linear mixing is believed to exist

between HIMU and EMI (Hart et al., 1986) and HIMU and DMM (I lart, 1988),

more complicated mixing arrays are probable amongst the other components.

Since no models exist for the nonlinear mixing arrays, it is easiest to represent

the sample points as a linear combination of the end-member points. Thus, it is

necessary to find the vertices of the smallest simplex with planar faces thait
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encloses as many data points as possible; these vertices are the "linear" end-

members. These end-members are chosen by rotating the figure to look at the

four sides of the tetrahedron edge on and noving out the "nonlinear" end-

members until the planar-sided tetrahedron defined by linear mixing expands to

contain as many sample points as possible, without becoming overly extreme

(Table 2.4). This is an admittedly subjective process, but more accurate than

choosing end-members using two dimensional plots. Figures 2.6 - 2.9 show the

four views normal to each of the tetrahedron faces.

When assuming linear mixing, the simplex defined by the final chosen

"linear" end-member points excludes only 13 OIB data points, out of 477, and 3

MORB data points out of 90 (Table 2.5), compared to the 85 IB and 49 MORB

data points excluded when using the "nonlinear" end-member values. The

excluded points will have negative amounts of some of the end-members and will

not be used in spherical harmonic expansions.

The end-member values selected in principal component space are

converted back into normalized isotope values (Tables 2.3 and 2.4) by

substituting zeros [the mean value for each principal component] for the fourth

and fifth principal components in the Z matrix:

CII ..... C14 ell e]2e13 e-h4 e] 5 -I Z11 . . . . . . Z14
C21 ....... C24 _ Z21 ....... Z2
C31 ........- 3 .HZ 31 . . . . . .Z3
C41.......C44 6L ee 52 e53 e54 55  0 ...... 0

C~l C340 ......

C51 . . . . . . .C54i 0....

where C1L is the normalized 8 7 Sr/ 8 6 Sr ratio for the ith end-member component,

and so forth. There is some error involved in this process, but because (he

variances of the fourth and fifth principal components are small, the error is

small. To compute these errors, the entire OIB+MORB data set is transformed
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into principal components; the fourth and fifth principal components are

dropped; the approximate normalized isotope values are computed as above; and

these values are then unnormalized and compared to the actual isotope values.

The average absolute errors for this transformation are fairly small compared to

the isotope standard deviations (Table 2.6). Compared to the range of analytical

errors, all of the transformation errors are reasonable except the one for
2 0 6 Pb/2 0 4 Pb, which is approximately 6x larger than its analytical error (Table

2.6).

Finally, the samples are computed as percentages of the four "linear" end-

members:

C11 . . . . . .. C14  
Y  i1

C21 . . . . . . .C24 rPij Y2j
C31 . . . . . . .C34 P-, Y3i
C 4 1 . . . . . . .C44 P3j Y4j

C51 ....... C54 P4jj Y 5j
1 .. .. . I1 3

where Pij is the percentage of the ith end-member component for the.ith sample

and Y i is the ith normalized isotope value for thejth sample. The C matrix is

the normalized end-member isotope value matrix computed from above with an

additional row of ones. This row of ones and the one included in the Y vector

define a constraint that the sum of the percentages add up to 1. This is necessary

to provide useful positive results between 0 and I since the tetrahedron is not a

four-component composition diagram, but resides in Euclidean space. QR

decomposition is used to solve this over-determined system of equa:tions. It

decomposes the C matrix into two matrices: Q [orthogonalI and R I upper

triangular]: QRp = Y, with solutions: pest = R-IQTy.
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SPATIAL CORRELATION TESTING

Methodology

In order to check for spatial correlation, a paired distance approach is

employed, as outlined in Mantel (1967), using geographic and isotopic distances.

The geographic distance used is that of an arc on a sphere connecting any two

sample locations, ie. a great circle distance (Turcotte and Schubert, 1982). The

angle A i between the two locations I and J on the sphere (Fig. 2.10) is given by:

Ai " = cos-I[cos 0j cos Oi + sin Oj sin 0i cos (q,-(pi)]

where 0i and (pi are the colatitude and longitude of location I and 0 and (p are

the colatitude and longitude of location .1. The surface distance s between / and./

is:

sij = RAij

where R is the radius of the earth [R = 6378.139 km]. The isotopic distance used

is the generalized Euclidean distance in multidimensions scaled by the variances

of the isotopic ratios. Scaling by the variances of the isotopic ratios is necessary

to keep the distance measurement from being dominated by the isotopic ratio

with the largest variance, 2 0 6 Pb/ 2 0 4 Pb (Table 1.2). For any two samples X i and

X the isotopic distance between them, d, is:

= V(X- Xj)TvI(Xi - XJ)

where
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xi1= IX3,.

is the isotope vector for ith sample [Xli is the 8 7 Sr/8 6 Sr ratio of the ith sample,

etc.] and V is the diagonal variance matrix. A similar distance measurement,

called Mahalanobis distance (Manly, 1986) was considered, but not used because

it utilizes the covariance matrix. Covariance is a meaningful measurement when

the data is normally distributed (elliptical) in space. From the three-dimensional

principal component plots (Figs. 2.5-2.9), it is apparent that the data set is not

elliptical, so covariance is a meaningless measurement concerning the nature of

the data.

Next, the correlation between the two distances for all the samples is

calculated. The key to Mantel's (1967) technique is to determine the significance

of this observed correlation by creating random pairings of the sample locations

and isotopic signatures, calculating the appropriate distances, and computing

their correlation, thus constructing a distribution against which the observed

value can be judged. This distribution is that of the correlation under the null

hypothesis that the geographic distances are matched to the isotopic distances at

random.

Zindler and Hart (1986) noted a relationship between the scale length of a

geographic feature and the isotopic range of that feature. Basically, they

concluded that the largest isotopic ranges occur in the largest geographic

features, while small isotopic ranges may occur in small or large features. This

implies a correlation between the within-feature geographic distance and the

within-feature isotopic distance. The paired distance correlation method outlined

above computes the correlation between geographic and isotopic distances both
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within features and between features. In using this method, it is possible that any

correlation within the features may be masked by a lack of correlation between

the features. As an additonal check for within-feature correlation, a count is

kept of the number of times a sample's isotopic nearest-neighbor [the sample that

is the smallest isotopic distance from the sample in question] occurs within the

same island and within the same island group [or island, if an island is not part of

a larger group]. The counts are performed both for the observed data and for

the random permutations. Those from the random permutations can be used, as

before, to judge the significance of the observed counts. The larger scale

geographic divisions of the data set into island groups and the remaining solitary

islands (Table 2.7) will be referred to from this point on as features.

Application to the OIB Data Set

For this application, the OIB data is used since only oceanic island

interrelationships are of interest. Two 477 x 477 distance matrices are calculated

for the geographic and isotopic distances between samples. For the observed

data, the correlation between the distance matrices is 0.1756 and the within island

and feature nearest-neighbor occurrence rates are 61.4% and 76.7%.

respectively (Table 2.8). The occurrence rates within islands and features appear

significant and are confirmed so by randomization, as none of the generated

occurrence rates are as large as the observed rates for 100 permutations (Table

2.8). The correlation, on the other hand, is small, but attains significance

compared to the randomization values which are all less than the observed value

(Table 2.8) Thus, both methods indicate that there is spatial correlation between

sample location and isotopic signature and the correlation that exists between

samples within the same geographic feature seems to dominate.



33

Treating the samples inside and outside the DUPAL belt separately and

then testing for spatial correlation yields results similar to those obtained with

the whole data set (Table 2.8).

It is not clear if all of the spatial correlation is due to the correlation

within the features. There may be some additional spatial correlation between

features. To check this, the appropriate samples are averaged to get an average

isotopic signature and location for each feature (Table 2.7). Using all of the

features both inside and outside the DUPAL belt, the observed correlation is

0.1584 with a significance level of 0.13 [there are 13 permutations, out of 100,

that have correlations higher than the observed correlation] (Table 2.8). Thus, it

appears that there is spatial correlation between features. However, if there is a

distinction between features inside and outside the DUPAL belt, this distinction

may manifest itself as spatial correlation when testing all of the features at once.

Testing the features inside and outside the DUPAL belt separately results in

correlations of 0.0685 and 0.2645 with significance levels of 0.95 and 0.51,

respectively (Table 2.8). These results indicate that there is no significant spatial

correlation between the features, but that there is a distinction between features

inside and outside the DUPAL belt.

DISCRIMINANT ANALYSIS

Isotopic Nearest-Neighbor Discriminant Analysis

Methodology. Without taking account of spatial correlation, the validity

of the division of the OIB data into samples inside and outside the DUPAL belt is

addressed using isotopic nearest-neighbor as a discrimination rule. Using the

isotopic distance measure outlined earlier, a given sample's isotopic nearest-

neighbor is the sample that is the smallest isotopic distance away.
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For the discriminant analysis, the assumption is made that the selected

sample's location is unknown, so it is assigned the location of its isotopic nearest-

neighbor. This assigned location is compared to the actual location; if they are

different, it is a misclassification. A count is kept of the number of

misclassifications to calculate an error rate.

Solow (1990) proposes a randomization technique for judging the

estimated misclassification probability or error rate. The importance of the

misclassification error rate is to test the null hypothesis that there is no

difference between the samples inside and outside the DUPAL belt. This is a

trivial matter if the sampling distribution of the error rate under the null

hypothesis is known, but in this case it is not. A simple but effective way to

judge the significance of the observed error rate is to construct a randomization

distribution under the null hypothesis that the pairing of isotopic signatures and

locations inside or outside the DUPAL belt occurs by chance. Applying the

randomization technique to the data, the samples retain their isotopic signature,

so their isotopic nearest-neighbor remains the same, but they are randomly

assigned to locations inside and outside the belt. The discriminant analysis is

done, as described above, with this new randomly constructed data set to get its

misclassification error rate. Then the process is repeated to construct the

distribution.

Application to the OIB data set. For the OIB data set, the observed

misclassification rate is 7.3% and the randomization error rate ranges from

35.2% to 53.7%. Superficially, it appears that describing the data as two

populations residing inside and outside the DUPAL belt is viable. However, the

within-feature spatial correlation has not been accounted for in this analysis. If

76.7% of the time, a sample's isotopic nearest-neighbor is located within the

same geographic feature, then it seems obvious that the misclassification error
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rate would be small. The observed error rate itself is not incorrect, but the

randomization distribution of error rates against which it is being judged is

incorrect. In order for the significance of the observed error rate to be properly

judged, the spatial correlation must be preserved in the randomization process.

In this case, preserving the spatial correlation is too complicated to pursue when

other methods may provide the desired information.

Graphical Discrimination of Geographic Features

As shown earlier, the correlation between isotopic distance and the

geographic distance within features is very strong. A way around this spatial

correlation is to look for differences between populations inside and outside the

DUPAL belt on the feature level. The averaged isotopic values for the features

(Table 2.7) are scaled by the mean ana standard deviation of the isotopes derived

from the entire OIB+MORB data set (Table 1.2) and expressed in terms of

principal components using the eigenvectors of the OIB+MORB correlation

matrix (Table 2.1).

The first three principal components are plotted to look for differences in

features inside and outside the DUPAL belt, with the general direction of the

end-members indicated (Figs. 2.11-2.13). On all of the plots, but especially Z3

versus Z2, most of the features outside the belt cluster in a band between DMM

and HIMU, with the exception of the Hawaiian islands [the Koolau volcanics on

Oahu show a strong EMI signature (Hart, 1988)], Shimada Seamount Iwhich also

has an EMI signature (Hart, 1988)], and the Azores [Sdo Miguel has a strong

EMIl signature (Hart, 1988)]. Essentially, the features outside the DUPAL bell,

with few exceptions, occupy only part of the available isotopic space, while

teatures inside the belt occupy all of the available isotopic space, including some

overlap with features outside. This is essentially the relationship found by Hart
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(1988), not that the two populations are totally separated, but that one population

contains isotopic signatures that the other does not. It is important that this two

population distinction is still valid on the feature level. Since it is still apparent

at this larger scale (not just sample to sample] the geochemical signatures of the

oceanic island basahs do have a long wavelength component to them, making it

feasible to attempt to quantify these signatures using spherical harmonic

expansions.

In addition to this graphical presentation, the discrimination analysis can

also be done on the feature level, but the variances of the isotopes within each

feature must be accounted for in some way.

SUMMARY

Mathematical and statistical methods to explore and characterize the OIB

and MORB data reveal these main points:

• OIB+MORB data require only four mantle end-member components to

completely span the range of known isotopic values.

" Choosing the mantle end-member components can be made easier (and

more accurate] with the use of principal component analysis.

* Within geographic features, there is a significant correlation between

location and isotopic signature, but between geographic features, there

is not.
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Graphical discrimination of geographic features shows that the

distinction between islands inside and outside the DUPAL belt is

viable.

• The existence of the DUPAL anomaly on the feature level indicates

that the anomaly has a long wavelength component to it.
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Table 2.1. Covariance matrix 1 of the five isotopes with its eigenvectors and
eigenvalues.

Covariance Matrix

Isotope YI Y2 Y3 Y4 Y5

YI 1.000000 -0.796442 -0.273004 -0.019107 0.061599
Y2 1.000000 0.054987 -0.170370 -0.295078
Y3 1.000000 0.901205 0.894577
Y 4  1.000000 (.901429

Y5 ~I .000000()(

Eigenvector Matrix

Isotope I II I1 IV V

Y -0.017647 0.699432 0.682362 -0.174033 -0.120738
Y2 -0.122196 -0.683457 0.679315 -0.179201 0.156120
Y3 0.565079 -0.195210 0.019019 -0.235936 -0.765867
Y4 0.574974 -0.006763 ).2422C 5." -1C? 3 0.200145
Y5 0.578661 0.074352 -0.102014 -0.561051 0.578307

Eigenvalues 2.830 1.861 0.183 0.091 0.035

Percentage of total variance accounted for by each eigenvector

56.6 37.2 3.7 1.8 0.7

'Only the upper half of the covariance matrix is shown since it is symmetric.

All eigenvector values are rounded to six decimal places from the fourteen

decimal accuracy used in the calculations.

Covariance matrix is calculated using 477 OIB and 90 MORB samples.
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Table 2.2. Comparison of eigenvalues and percentages of variance accounted for
by the corresponding eigenvectors from this study and from Allgre et al.
(1987)1 for OIB+MORB and OIB data sets.

OIB+MORB 1 II III IV V

2 2.830 1.861 0.183 0.091 0.035

[56.6%] [37.2%] [3.7%] 11.8%] 10.7%]

3 Allegre 3.20 1.61 0.15 0.03 0.01
et al. 164.0%] 132.2%] 13.0%] 10.6% 1 10.2 %1

OIB I II III IV V

4 3.047 1.568 0.249 0.099 0.037
160.9%1 131.4%1 15.0%] 12.00c1 10.7 1

5 Allhgre 2.85 1.87 0.22 0.05 (.01
et al. 157.0%] [37.4%] [4.4%] [1.0%! 10.2%

lEigenvalues from Allgre et al. (1987) are converted to scaled eigenvalues that
add up to 5 for comparison with eigenvalues from this study.

Percentages of variance accounted for by the corresponding eigenveclors are
indicated in parentheses.

2 Based on 567 samples.
3 Based on 91 samples.
4 Based on 477 samples.
SBased on 53 samples.
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Table 2.3. "Nonlinear" end-member component values in principal component
space and the transformed values in isotope space.

End-Members in Principal Component Space

Zi Z2 Z3

EMI -2.0 3.6 -1.3
ENIII 1.0 4.0 2.2
HIMU 5.0 -1.3 -0.25
DMM -3.75 -2.9 0.4

End-Members in Isotope Space

Xl X2 X3 X4 X5

EMI 0.705311 0.512343 17.322 15.431 38.232
EMII 0.707759 0.512638 18.788 15.673 39.287
HIMU 0.702659 0.512887 21.615 15.833 40.911
DMM 0.702171 0.513329 17.594 15.381 36.983
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Table 2.4. "Linear" end-member component values, based upon lincar ~iX ing,
in principal component space and the transformed values in isotope space.

End-Members in Principal Component Space

ZI Z2 Z3

EMI -2.4 3.6 -1.6
EMIl 1.8 4.5 2.6
HIMU 6.0 -1.9 -0.6
DMM -4.3 -3.7 0.35

End-Members in Isotope Space

XI X2 X3 X4 X5

EIFN1 0.705126 0.512316 17.121 15.403 38.082
EMIl 0.708329 0.512609 19.103 15.724 39.630
HIMU 0.702026 0.512896 22.203 15.879 41.337
DMM 0.701624 0.513428 17.459 15.351 36.704



43

Table 2.5. Samples excluded from linear mixing tetrahedral volume. I

Location Sample Number Row Number 2

Azores, Sio Miguel SMID 32
SM49 36

Galapagos E35 173
Gough 10 175
Hawaii 69Tan2 200
Kerguelen Plateau DR02/12 279

DR08 282
747c- 12r-4-45-46 292
747c- 16r-2-81-8 4  294

Marquesas uapll 329
Pitcairn, Pulwana 642 370
St. Helena 37 469

237 482

Atlantic Ocean AD3-3 535
SW Indian Ridge DI 536

D5 539

101B samples excluded from the volume will not be used in spherical harmonic

expansions.

2 Indicates row number of the data set included in Appendix A.
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Table 2.6. Average absolute errors in transforming three-dimensional principal
component data into five-dimensional isotope data, with their ratio to isotope
standard deviations and comparison to analytical errors.

Xi X2 X3 X4 XS

Average absolute error [for 567 samples]

0.000041 0.000008 0.111 0.016 0.111

Ratio of average absolute error to standard deviation1

0.043802 0.047124 0.128 0.170 0.149

Absolute Error Percentage Range 2  Analytical Error Range

X 1 0.00580 to 0.00584% 0.003 to 0.01%
X2 0.001558 to 0.001561% 0.003 to 0.01%
X3 0.225 to 0.330%/amu 0.03 to 0.05%/amu
X4 0.0337 to 0.0347%/amu 0.03 to 0.05%/amu
X5 0.068 to 0.075%/amu 0.03 to 0.05%/amu

lsotopic standard deviations for the OIB+MORB data set are indicated in Table
1.2.

2 Absolute error percentage ranges are calculated using the average absolute
errors and the ranges of the isotopes in the OIB+MORB data set:

X1 0.702290 to 0.707400
X2 0.512376 to 0.513290
X3 16.943 to 21.755
X4 15.406 to 15.862
X5 37.235 to 40.619
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Table 2.8. Correlations between geographic and isotopic distance matrices and
island/feature isotopic nearest-neighbor occurrence rates for all samples in the
OIB data set and samples inside and outside the DUPAL belt Correlation-for all
the geographic features and those inside ard outside the DUPAL belt are also
given.

Correlation Randomization Range 1

OIB 0.1756 -0.0077 to 0.0224
Inside DUPAL 0.0641 -0.0035 to 0.0343
Outside DUPAL 0.6142 -0.0045 to 0.0699

Island Occurrence Rate Randomization Range]

OIB 61.4% 1.0% to 3.6%
Inside DUPAL 63.6% 1.6% to 6.2%
Outside DUPAL 47.1% 1.7% to 11.0%

Feature Occurrence Rate Randomization Range 1

OIB 76.7% 3.4% to 10.0%
Inside DUPAL 71.5% 4.2% to 11.1%
Outside DUPAL 75.6% 19.2% to 35.5%

Correlation Randomization Range1  Significance
Level

Features 0.1584 0.0369 to 0.2075 0.13
Inside DUPAL 0.0685 0.0350 to 0.2807 0.95
Outside DUPAL 0.2645 0.0649 to 0.6602 0.51

1Randomization ranges based upon 100 random permutations.



50

4.. t- - 0 °]-o l -i-i i I
41 -HO

t -.----- ii- ° - o -' I. i

- , , o ',tD"I ~. --- 1.-............3i_....

1- - - '- U- - • --- - -...
-4~~ ~ -3 - (1 0 1 P

00

01Z-

Fig. 2.1. Plot of the second principal component versus the first principal
component for the OIB+MORB data set. Symbols: x = MORB data, open circle
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DUPAL belt. General mantle end-member component regions are indicated.
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Fig. 2.2. Plot of the third principal component versus the first principal
component for the OIB+MORB data set. Symbols: x = MORB data, open circle
= OIB samples inside the DUPAL belt, black diamond = samples outside the
DUPAL belt. General mantle end-member component regions are indicated.
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z

Fig. 2.5. Three-dimensional view of the OIB+MORB principal component data.
Axes: X = ZI, Y =Z2, Z = Z3. Symbols for the end-member components: +=
EMI, x = EMIT, diamond = IMU, square = DMM.
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iF

Fig. 2.6. Three-dimensional view of the OIB+MORB principal component data
parallel to the EMI-EMII-HIMU plane. Symbols for the end-member
components: + =EMI, x =EMIT., diamnond =HIMIJ, square =DMM.
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Fig. 2.7. Three-dimensional view of the OIB+MORB principal component data
parallel to the EMI-EMII-DMM plane. Symbols for the end-member
components: +~ = EMI, x = EMII, diamond = HIMU, square = DMM.
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Fig. 2.8. Three-dimensional view of the OIB+MORB principal component data
parallel to the EMI-HIMU-DMM plane. Symbols for the end-member
components: + = EMI, x = EMII, diamond = HIMU, square = DMM.
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Fig. 2.9. Three-dimensional view of the OIB+MORB principal component data
parallel to the EMII-HIMU-DMM plane. Symbols for the end-member
components: + = EMI, x = EMII, diamond = HIIviJ, square = DMM.
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Geographic
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i 0 Equator

Fig. 2.10. Geometry for determining the surface distance s between locations I
and J on the globe, where 0 and (p are colatitude and longitude and A is the angle
between the two locations taken from the center of the Earth. From Turcotte
and Schubert (1982).
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Fig. 2.11. Plot of the second principal component versus the first principal
component for the 36 geographic features. Symbols: open circle = features
inside the DUPAL belt, black diamond = features outside the DUPAL belt.
Labeled points: 1 = Hawaiian Islands, 2 = Shimada Seamount, 3 = Azores. The
general directions of the mantle end-member component regions are indicated.
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Fig. 2.12. Plot of the third principal component versus the first principal
component for the 36 geographic features. Symbols: open circle = features
inside the DUPAL belt, black diamond = features outside the DUPAL belt.
Labeled points: 1 = Hawaiian Islands, 2 = Shimada Seamount, 3 = Azores. The
general directions of the mantle end-member component regions are indicated.
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Fig. 2.13. Plot of the third principal component versus the second principal
component for the 36 geographic features. Symbols: open circle = features
inside the DUPAL belt, black diamond = features outside the DUPAL belt.
Labeled points: I Hawaiian Islands, 2 = Shimada Seamount, 3 = Azores. The
general directions of the mantle end-member component regions are indicated.
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CHAPTER 3

SPHERICAL HARMONIC REPRESENTATION OF ISOTOPIC
SIGNATURES: THE CONTINUOUS LAYER MODEL

INTRODUCTION

Hart (1984) contoured world maps of OIB isotope data for his three

DUPAL anomaly criteria [ASr> 40; A7/4 > 3; A8/4 > 401. These maps show a

concentrated band spanning approximately 600 of latitude, centered on 30'-40'S,

with pronounced highs for the anomaly criteria in a region from the South

Atlantic to the Indian Ocean [ASr, A7/4, A8/4] and in the central Pacific [ASr,

A8/4]. Qualitatively, Hart (1984, 1988) believes this geochemical anomaly

correlates with other geophysical anomalies: the slab-corrected geoid (Hager,

1984), deep mantle P-wave tomography maps (Dziewonski, 1984), slow P-wave

regions at the core/mantle boundary (Creager and Jordan, 1986) and equatorial

anomalies in the core (Le Mou~l et a., 1985). These geophysical anomaly

patterns are typically expanded in terms of spherical harmonics, therefore any

attempt to make a quantitative comparison between geochemical and geophysical

patterns requires expanding the geochemistry data in spherical harmonics as

well.

Expansion of the geochemistry data is approached in two ways, based

upon an assumed geometry for the OIB geochemical reservoir. The first

approach, the "continuous layer model" discussed in this chapter, assumes that

the OIB reservoir is a continuous layer [not ruling out heterogeneities within this

layer] and tries to reconstruct this layer. Plumes from this layer only sample the

continuous geochemical "function" in discrete locations. With the geochemistry

"function" unknown, the spherical harmonic coefficients must be solved for

using least squares, singular value decomposition or a similar method that will

approximate the values of the geochemistry "function" where there is no data.
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The second approach, the "deha-function model" discussed in Chapter 4, assumes

that the OI3 reservoir is composed of a series of point sources, each feeding a

separate plume. In this case, the geochemistry "function" is known and can be

represented as a series of delta-functions. The spherical harmonic coefficients

can be solved for directly with the simplification from integration to summation

allowed by the delta-function approximation.

The continuous layer model and the delta-function model are not meant to

suggest two end-member possibilities for OIB source geometry. Rather, the

delta-function model can be regarded as an approximation of the continuous

layer model that gives a mathematically robust solution for the spherical

harmonic coefficients. In regard to the oceanic crust model of Hofmann and

White (1982), the continuous layer model corresponds to the accumulated layer

of subducted oceanic crust, with the plume-forming instabilities occurring at

discrete locations within this layer. The delta-function model can also be

reconciled with the accumulated layer model, with the stipulation that discrete

pockets [point sources] within this layer form and feed individual instabilities.

For the purposes of minimizing small scale variations [ie. variations

within a single island or island chain] in the geochemistry "function" that cannot

be accurately represented with the incomplete global data coverage, this spherical

harmonic study is based on the averaged isotopic signatures of the 36 geographic

features (Table 2.6). These average isotopic values are converted to mantle-end

member component percentages (Table 3.1), as outlined in Chapter 2, to form

the data matrices used in the expansions.

SPHERICAL HARMONIC BASICS

Spherical harmonics. Y"(0,(p), are a set of orthonormal functions over the

unit sphere:
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YMn(0,0P) - /(2l1)(l-,)! n(cosO) ei'W47t(l+?n)!

where I is the degree of the expansion, m is the order of the expansion, 0 is

colatitude [0 = t/2 - latitude; 0<0<rt] and (p is longitude I-it<_ <tJ. The

functions eim(P form a complete set of orthogonal functions in the index m on the

interval -rt '(p<t and the associated Legendre polynomials Plk(cosO) form a

similar set in the index 1 for each m value on the interval -l<cos01 (Jackson,

1975). Therefore their product forms a complete orthogonal set on the surface

of the unit sphere in the two indices 1,m. The spherical harmonic functions used

in this analysis are normalized by the square root term so that their integrated

square over the sphere is unity [in most geophysics applications, the functions are

normalized so that the integrated square over the sphere is 4r]:

J dpf d(cosO)Y (O,(p)* Y7 (0,p)

where the asterisk denotes complex conjugation.

Any function.f(pp) can be expanded in spherical harmonics:

L I

f(0,P) = CYm(0,°P)
1=0 m=-I

where L is the maximum degree of the expansion and , are complex spherical

harmonic coefficients. Written in a more explicit form, the equation becomes:

fOw(p) I 21+l)(l-m)! * P(cosO)[Amcosinq) + l3Tsinmp]
/=() ,,,:<1 4 r.I+ )
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where A.. and B"' are real spherical harmonic coefficients. When expanding a

function from degrees 0 to L, the number of coefficients that need to be
L

calculated is: 2 There are actually an additional [L+1 I coefficients

involved, but for m = 0, sinmnp = 0, so BO = 0. It is important to realize that

only having 36 features limits the possible spherical harmonic expansion to

degree 5, in order to avoid a purely underdetermined problem.

MANTLE END-MEMBER COMPONENTS

When attempting to use inverse methods to solve for the harmonic

coefficients of an unknown function, careful attention must be paid to the

variation of the data as a function of distance to avoid the problem of aliasing.

For a simple two-dimensional case, aliasing occurs if the sampling interval is

longer than half the shortest wavelength of the function sampled, causing the

sampled points to show a periodicity that does not exist in the original data. The

minimum distance between any two geographic features in the OIB feature data

set is 33.396 kni, but the distance between features is not constant. Plots of data

variation versus distance between data locations make it possible to select a

mininum sampling distance based on the shortest distance required to get the

maximum data variation. This minimum sampling distance then controls the

minimum degree to which the data must be ex'panded in order to adequately

represent the data in spherical harmonics without aliasing. The relationship

between wavelength and degree is:

-1(/+1)
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where X is the wavelength IX = 2*(sampling distance)], R is the radius of the

earth [R = 6378.139 km] and 1 is degree. Solving for degree in terms of

wavelength:

-1 + 1 2T

2

Variation-Distance Relationships

For variation-distance relationships, the distance measure is the angle Ai1

[in degrees] from the center of the earth between any two locations / and ./ Isee

Chapter 2] and the variation measure is the absolute value of the difference

between the mantle component percentages at those locations. The angle Aij can

be transformed into a great circle distance in km by converting Aij to radians and

multiplying by the radius of the earth R.

Plots of absolute difference versus angle for the four mantle components

(Figs. 3.1-3.4) show the maximum variation in the components occurring on

very short distance scales for the EMI and HIMU components and moderate

distance scales for the EMIl and DMM components. Based upon these plots, the

minimum sampling distances [in degrees] are - 14.50 for EMI and HIMU, - 390

for EMIl and - 570 for DMM. These correspond to expansions out to degrees

12, 4 and 3, respectively. For the current problem, the EMIl and DMM data sets

can be expanded in spherical harmonics as they are, but the EM! and HIMU data

sets require some additional manipulation.

Variation Reduction by Categorizing Features

Separation of the geographic features into populations located inside and

outside the DUPAL belt 12°S to 600S1 does not result in two distinct isotopic

populations [Chapter 21. Essentially, one population Ioutside the belti defines a
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small field in isotopic space, while the other population linside the belt] defines a

larger Field that overlaps with the smaller field (Fig. 3.5). A possible source of

the large, small-scale isotopic variation exhibited by the EMI and HIMU data sets,

is the juxtaposition, due to the overlap in isotope space, of features having a

strong DUPAL signature next to those that do not. If it is possible to separate

DUPAL-type features [those features showing a strong DUPAL signature] from

DMM-type features, this separation might reduce the small-scale variation within

these two populatiuns and thus reduce the degree to which the population data

must be expanded.

Since the goal is to separate DUPAL-type features from DMM-type

features, a logical starting place is to look at the spatial distribution of different

percentage categories of the DMM component in three-dimensional principal

component space (Fig. 3.6). Six DMM percentage categories 1<10%, 10-20%,

20-30%, 30-40%, 40-50%, >50%1 can be distinguished as six separate point

groupings. Most striking is a large spatial separation that occurs within the 30-

40% category for a small percentage difference [Louisville - 31.84%, Balleny -

32.17%, Cocos - 38.53%]. This is a reasonable place to separate the DUPAL-

type features from the DMM-type features, with a boundary value of 32%

DMM, for simplicity. The resulting 27 DUPAL-type features and 9 DMM-type

features, with their percentage of the DMM component are listed in Table 3.2.

There are too few DMM-type features to draw any conclusions from plots

of absolute difference versus angle. For the DUPAL-type features, plots of'

absolu;c difference versus angle of the DUPAL components [EMI, EMIl and

HIMU] show no reduction in the small-scale variation, while that of DMM does,

with an increase in sampling distance from - 570 to 890 (Figs. 3.7-3.10). In

retrospect, this is an obvious result of the artificial separation performed. The

percentage categories are basically parallel slices through the tetrahedron that
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move from a broad base of lower percentages to a peak of high percentages

approaching an end-member component apex on the tetrahedron [like a ternary

diagram]. It is true that these slices can separate DMM-type features from

DUPAL-type features, but only the variation of the DMM percentages are

reduced. To reduce the variation of the individual DUPAL components using

this method, EMI-type features would have to be distinguished from non-EMI-

type features, etc. This would generate four different, though overlapping, sets

of features to use to characterize the four different components. Manipulation of

the data set in this way is not desirable, so another mczhod must be pursued in the

attempt to reduce small-scale data variation.

Variation Reduction by Filtering

Another method to reduce small-scale variation [and hopefully enhance

any long wavelength component] is to filter the data set in some way. Here, a

simple circular filter, of fixed radius, is applied to each feature location. Tile

new data values assigned to that feature location are the means of the mantle

component percentages of the feature locations that fall within the circle. To

ensure that there are always at least two features falling within the circle, the

radius of this circle is determined by the longest distance to the nearest feature

location. Nunivak Island is the most isolated feature with the nearest feature

being the Hawaiian Islands at an angular distance [from the center of the earthI of

40.86'. The circle radius is then 40.9', for simplicity.

Plots of absolute difference versus angle for the filtered data set yield

interesting results (Figs. 3.11-3.14). All of the mantle component data sets show

a reduction in small-scale variation, except EMIl, which shows an increase in

variation, with a decrease in aneular samplinp distance from - 39' to 2 7 '

lexpansions to degrees 4 and 7, respectivel']. The remaining pliots show an
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increase in angular sampling distance from - 14.50 to 37' [expansions to degrees

12 and 5, respectively) for EMI, an increase fro.- - 570 to 1020 lexpansions to

degrees 3 and 2, respectively] for DMM and a dramatic increase from - 14.50 to

830 [expansions to degrees 12 and 2, respectively] for HIMU. Now that the

small-scale variation has been significantly reduced by filtering, the filtered EMI

and HIMU data sets can also be expanded in spherical harmonics.

INSIGHTS FROM GEOPHYSICAL DATA

It is unclear how accurate the spherical harmonic expansions of the 0113

feature data set will be due to the limited global coverage and the highly variable

nature of the data. In an attempt to address these problems, three geophysical

data sets, with different variance characteristics, are constructed with the same

limited coverage to provide a sort of control set against which qualitative
(

comparisons can be made. Geoid, gravity and gravity gradient anomalies are the

chosen geophysical measures because their coefficients are well known and they

form a kind of continuum from the long wavelength I low degree] dominance in

the geoid signature to the short wavelength [high degree] dominance in the

,ravity gradient signature (Fig. 3.15). Techniques applied to the mantle

)mponent data, to solve for the spherical harmonic coefficients, are also applied

these constructed data sets to see how closely the actual geophysical

fficients can be approximated.

,truction of Geophysical Data Sets

The gravitational potential V, in spherical harmonics as a function of

listance r, is given by:
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- GM +>{R)I+i (2l+)(-rn)! l7(cosO)[Almcosmp(+Bjsinm(p]
1 r =2 Pn=O 4iT(1+m)!

where G is the gravitational constant [G = 6.6726x10-11 m3/kg-s 2 ], M is the

mass of the earth [M = 5.973x10 2 4 kg] and R is the radius of the earth in meters

(Stacey, 1977). The gravitational potential anomaly [1V = Vobserved -

Vtheoretical] is:

8(21+)GM pyfl(cosO)[Amcosm( + Blsinmp]
R 1=r m=O

which can be converted to the geoid anomaly 6N (in m) by d,.-.idir k,,y

g = -GM/IR2 :
N b[l I - I IIl  (2/+ 1 )(/i-m)!

N- ( 2 I±-(m)! P/(cos)[A'cosmp + Bnsinmp]
g 1=2 ( m=01

The geoid anomalies calculated here are referenced to a theoretical hydrostatic

sphere to remove the effect of the earth's rotation (Hager, 1984). Gravity is the

derivative of the gravitational potential with respect to radial distance, so the

radial gravity anomaly is:

or

G Mf (1+1) x1±2 (21+1___ XAlcsmp m.*
(21+1X/ +- r) P'm(cosO) +AIomp4 B'Isinni~p

__ 4it(l+nz)!1= m=0

Gravity gradient is the derivative of gravity vth respcct to radial distance, so

the radial gravity gradient anomaly is:



72

-GMl (1+1)(1+2)(1 m= (+ )!m P7 "(cosO) [A'j7cosmn(p + 13B?177ip
2 k2  r ) (1lInI)

Evaluating at r =R and using the spherical harmonic coefficients 2-20 from the

GEM-L-2 model (Lerch et al., 1982), the equations simplify to:

(5N=1)/-) RP721(cosO){[Amcosrn(P + Bmlsinmp
R 1=2 m=( 47r(l-inz)! (

_5 = GM )(+) 2+1(-m!(cos)[Arfl Os7 + Bsin

It is important to note that the GEM-L-2 coefficients must be multiplied by V4--
before they are plugged into these equations to be consistent with the spherical

harmonic normalization used in this study. The three geophysical control dat;'

sets are constructed by calculating the values of the geoid, gravity and gravity

gradient anomalies at the 36 feature locations (Table 3.3).

Variation-Distance Relationships

The different characteristics of the contructed geophysical data sets are

apparent in plots of absolute difference versus angle (Figs. 3.16-3.18). The

geoid plot shows a clean and fairly symmetric degree 2 pattern, with an angular

sampling distance of - 102". The gravity plot is a little more dispersed, xith
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weaker symmetry and an angular sampling distance of- 950 [expansion to degree

2]. Finally, the gravity gradient plot shows even more dispersion and an angular

sampling distance of- 670 [expansion to degree 3]. A comparison of these plots

to those for the mantle components clearly illustrates the complexity of the

geochemistry data. Even the gravity gradient data (dominated by short

wavelength energy] appears to have less small-scale variation [larger angular

sampling distance] than all of the mantle component data sets.

Variation Reduction by Filtering

The same circular filter technique outlined above is applied to the

geophysics data to see its effect (Figs. 3.19-3.21). The filtered geoid data set

retains its strong degree 2 signature [angular sampling distance - 930], but there

is a slight increase in the dispersion of the data points. Like the geoid, the

filtered gravity data maintains its angular sampling distance 1- 9301 and it shows

a slight decrease in data dispersion. The gravity gradient data is most affected by

the filtering process. The data dispersion due to large variation at small and

large angles is reduced. In addition, the angular sampling distance is increased to

770, corresponding to spherical harmonic expansion to degree 2.

EXPANSION OF GEOPHYSICAL AND GEOCHEMICAL DATA SETS

By choosing the sampling distances based upon the inherent variation-

distance relationships of the different data sets, the problem of aliasing is

eliminated. Of course, the location patterns that result from spherical harmonic

expansions may not represent the true patterns as they exist in the mantle, but

without a more extensive global data set, there is no way to better approximate

the true pattern. Coefficients will be found for all six geophysical data sets
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(filtered and unfiltered], for the EMIl and DMM data sets and for the filtered

EMI and HIMU data sets.

Solving for the spherical harmonic coefficients needed to expand a given

function is a linear inverse problem. More specifically, the expansion of the

mantle components or geophysical measures is a discrete linear inverse problem,

since the data are discrete observations. The terminology and symbology used

here to discuss inverse problems is that of Menke (1989). Values of the mantle

components or geophysical measures at the feature locations form a vector of'

data values d INxl J. Tile unknown spherical harmonic coefficients form a1

vector of model parameters m [ M×xI]. Relating the two is the data kernel matrix

G [NxM], composed of Legendre polynomials [functions of colatitudel combined

with sine and cosines [functions of longitude]. In matrix form the equation is:

Crm d, or written out more explicitly:

N/ P4(cosOo)) . .. 'i 14(cosO0 ) cosLpo \/i{(cost) sinLqR) 1 A [do

L d,

'1 ~}cos~v...\IP(COSON) cosLpN -V P1l(cosON sIn~ KBL[
where L is the maximum degree of tile expansion, N is the number of data

observations and q, is the normalization factor mentioned earlier.

Least Squares Method

Theory. If the equation Cnm = d provides enough information to uniquely

determine the model parameters or the best fit to the model parameters, then

solving for the spherical harmonic coefficients from degrees 0 to 5 is an even-

determined problem [N = 36, 1 = 36] and solving for the coefficients from
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degrees 0 to <5 is an overdetermined problem [N = 36, M <36]. For an

overdetermined system of equations Gm = d, with more equations than

unknowns, there is no exact solution. The least squares method finds the model

parameters that minimize the error between the observed data and the predicted

data, ie. it minimizes the L-2 norm of the prediction error:

L 2 norm: II e112 = I e-I2 , where e i = dbs- dpr

i=1

When solving for the model parameters m [spherical harmonic coefficients], it is

best to use QR decompositon. The normal equations GTGm = GTd lead to the

solution: mest = (GT(GI(GTd, but if GTG is ill-conditioned, then taking its

inverse leads to inaccurate solutions. QR decomposition is more accurate than

the normal equations for ill-conditioned matrices. It decomposes the data kernel

matrix G into two matrices: Q (orthogonati and R (upper triangularl" QRm

d, with solutions: mest = R-1QTd.

Application. As a test of the viability of the least squares method, tile

spherical harmonic coefficients for the EMII percentage data and the geoid
anomaly data are solved for in nested groupings from degrees 0-I up to degrees

0-5. As the data is expanded out to greater degrees, the coefficients should

decrease smoothly. Table 3.4 shows how the degree 2 coefficients vary as the

two data s,.ts are expanded out to progressively higher degrees. Only the Al and

A' coefficients for the geoid and the A0 coefficient for EMII decrease smoothly

for the degrees 0-2 through degrees 0-4 expansions. The other coefficients

either get larger or oscillate. When solving the even-determined system Idegrees

0-5], all of the coefficients experience a large increase or decrease, indicating a

very unstable solution.
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Since the geoid coefficients are known, the correlations [by degree]

between the actual coefficients and the computed coefficients for the nested

groupings can be calculated. The correlation coefficient r l for two sets of

coefficients [A1,BI] and [A2,B21 is given by the ratio of covariance to variance

at each harmonic degree (Richards and Hager, 1988):

AI ,A/ + BI fB21
m=0

I [(A I) + (B12 I [(A2m )2 +(132m2
m=0 rn=0

Correlations with the actual geoid coefficients can only be made at degrees 2 and

higher since the actual degree 0 and I coefficients are zero. Correlations of the

actual geoid coefficients to those calculated using least squares are:

Expansion Correlation Coefficient [r]

Degree 2 Degree 3 Degree 4 Degree 5

Degrees 0-2 0.046 .........

Dec rees 0-3 0.960 0.794 ......

Degrees 0-4 0.884 0.469 0.597 ---

Degrees 0-5 -0.219 -0.7,)5 -0.035 0.031

The expansion for degrees 0-3 shows the best correlation, but there is no

consistency from expansion to expansion. Since the least squares solutions do not

exhibit consistent, stable behavior, it appears that the system Gnm = d does not

provide enough information to uniquely determine the model parameters [or a

best estimate for them]. This indicates that lhe system is not even- or
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overdetermined, but mixed-determined [neither completely overdetermined nor

completely underdetermined] and requires a more sophisticated method to solve

for the coefficients.

Singular Value Decompositon Method

Theory. Singular value decompositon, or SVD, is one way to solve a

mixed-determined problem. Its purpose is to partition the system of equations

into an overdetermined part [that can be solved in the least squares sense] and an

underdetermined part [that can be solved assuming some a priori information].

For the general equation Gm = d, it is like a transformation to the system Gin'

= d', where m' is composed of an overdetermined part, m ° and an

underdetermined part mu (Menke, 1989):

Gm= d --) Gin' =d' -) Go MO = d u'

SVD decomposes the data kernel matrix G into three matrices: G1

UAVT. The matrix U is an NxN matrix of orthonormal lorthogonal and of unit

length I eigenvectors that span the data space S(d). Similarly, the matrix V is an

MxM matrix of orthonorma! vectors that span the model parameter space S(m).

The matrix A is an NxM diagonal eigenvector matrix with nonnegative diagonal

elements called singular values, arranged in order of decreasing size. Some of

the singular values may be zero, making it easy to partition the matrix into a

submatrix Ap, with p nonzero singular values, and several zero matrices:

A[ 01. This simplifies the data kernel decomposition to: G = UPA V)

where U and V are the first p columns of' U and V, respectively.
p p
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For the equations Gim = d, tile solution is: mcst = VpAlUd called the

natural solution (Menke, 1989). If the equation GM = d is to some degree

underdetermined, Ap specifies the combinations of model parameters for which

the equation does provide information; these combinations lie in a suhspace of

the model parameter space Sp(m). On the other hand, if GM = d is to some

degree overdetermined, then Ap specifies the combinations of model parameters

that the product Gni is capable of resolving; these products span a subspace of

the data space Sp(d). If none of the singular values are zero, there are

undoubtedly some very close to zero that are affecting the solution variance.

One way to reduce the solution variance is to select a cutoff size for the singular

values and exclude any singular values smaller than this lie. artificially decide the

size ofp, the number of nonzero singular values i nis is equivalent to throwing

away some combinations of the model parameters [thus reducing the sizes of Up

and V p 1. However, if the singular values excluded are small, then the solution

will be close to the natural solution, though the data and model resolution will be

worse. This is a classic trade off situation between resolution and variance

(Menke, 1989).

It is also possible to dampen the smaller singular values instead of

throwing them away [equivalent to the damped least squares method I. The

drawbacks to this method are that the solution is no longer close to the natural

solution, the data and model resolution are worse and the damping parameter

must be determined by trial-and-error. For this study, various methods are used

to try to determine the optimum number of singular values to keep [p] and all

singular values with index > p are dropped.

Desired number of singular values. The first step in determining the

desired number of singular values is to look at the data kernel spectrums [plots of

the size of the singular values versus their index] for the mantle component data
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kernel and the geophysical data kernels (Figs. 3.22-3.25). For the mantle

components, the data kernel G is only a function of location, so it is the same for

all four components. For the geophysical data, the data kernels are constructed

differently, so that all three equations with geoid, gravity and gravity gradient

data are solving for the same spherical harmonic coefficients. With respect to

the mantle component data kernel, terms in the geoid, gravity and gravity

GM (1+1)
gradient data kernels are multiplied by the additional factors of R, R 2  and

GM (1+1 )(1+2)
R 3  , lespeciively.

For comparison, spectrums for the degrees 0-1, 0-2, 0-3, 0-4 and 0-5

expansions are all plotted, but the emphasis here will be on getting reasonable

results using the degrees 0-5 expansion. All three geophysical spectrums and the

geochemical spectrum for this expansion show the singular values gradually

decreasing in value, with the last five or so singular values being very close to

zero. There is no obvious cutoff size for the singular values apparent in these

plots, so other methods 2-,ust be used to estimate p.

For the geophysical control set, it is possible to find the number of

singular values p needed to most closely approximate the actual coefficients. The

root mean square error between the actual and estimated geophysical coefficients

is given by:

- Me

coefficient nns error =

M

where M is the number of coefficients (model parametersi. A plot of coefficient

rms error versus the number of singula, values retained (Fig. 3.26) indicates that

30, 26 and 14 sin2ular values should he retained, for geoid, gravity and gravity

gradient, respectively, to most closely approximate the actual coefficients. These
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values are indicated on the data kernel spectrum plots (Figs. 3.22-3.24). It is

Important to note that the more a field is dominated by high degree energy, the

fewer singular values it takes for the rms error to explode [at least for these

sparse data sets].

Since the coefficients for the geochemistry data are not known, there is no

way to measure how closely the estimated coefficients match the actual

coefficients. What can be done is to try to match the observed data as closely as

possible, while keeping the solution variance at a minimum. As a first step,

trade-off curves are constructed to bracket the range of p values that balance the

size of the model variance and the spread of the model resolution (Figs. 3.27-

3.30). The size of the model variance is based upon the unit covariance matrix

of the model parameters, which characterizes the degree of error amplification

that occurs in the mappinp from data to model parameters (Menke, 1989).

Assuming that the data within the four mantle component vectors and the three

geophysical vectors are uncorrelated and have uniform variance o [a reasonable

assumption for the mantle component vectors based upon the findings in Chapter

21, the covariance matrix of the model parameters is given by:

{cov mes ] = G -qcov d]G-gT = c%-G -gT

where G - is the generalized inverse, which for singular value decomposition is:

The unit covariance matrix is:
covmeSt = Tcov mes=] - -V

Finally, the size of the model variance is: rA M

size(cov me-"']) varu mesh = [varu mes]i = [ [covu mstlii
Li i~i

where Al is the number of model parameters. To summarize, the size of the

model variance is the sum of the variances of the model parameters, which are
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the diagonal elements of the model parameter covariance matrix. With

increasing values of p, the size of the model variance will increase.

Since resolution is optimal when the resolution matrices are identity

matrices, it is possible to quantify the spread of model resolution based on the

size of the off-diagonal elements of the model resolution matrix R (Menke,

1989):
M M

spread(R) = II R -1112= _. _ [Rij -I]

i=1 jfi
where I is the identity matrix and R = VpVT , [mesL= RmtruC]. With increasing

values of p, the spread of the model resolution will decrease.

Trade-off curves of size of model variance versus spread of model

resolution, as a function of the number of singular values retained, show two

asymptotes [retaining all 36 singular values gives the largest model variance size]

(Figs. 3.27-3.30). The ideal range for p, to balance the two measures, is in the

transition between the asymptotes (Table 3.5).

Another way to try and pin down the desired number of singular values

[to most closely approximate the data] is to look at plots of model rms error and

a variance measure versus the number of singular values retained (Figs. 3.3 1-

3.34). Model rms error is given by:

modiel rms error= i=
N

where

dP: c ,((VA; U) dobs = U uJ dobs

While VTVp and uTU P are the identity matrix, V V T and UU T are not

necessarily the identity matrix, since U p and V p do not in general span the

complete data and model spaces (Menke, 1989). The variance measure used is:
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P

variance measure . [AjP1ii
i=1I

since the solution variance is proportional to A-2 . Again , the goal is to use the

plots of these two quantities to select p so that the model rms error and the

solution variance are balanced (Table 3.5).

Choosing ranges for p using trade-off curves and the model rms/variance

curves is a subjective process. The ranges of values are chosen by eye and there

is no objective way to select an optimal value of p from these methods. To make

the process more objective, Jacobson and Shaw (1991) suggest applying a

sequential F-test to SVD problems to find the statistically optimal solution.

Given a null model with q parameters and a larger general model with b

parameters [h > q], testing the null hypothesis that the additional [b - q]

parameters in the general model do not improve the fit to the data [compared to

tile null model] requires thne use of the F-statistic:

F _ (RSSq- RSSb) (n- h)
(1,-q) RSS,

where RSSq and RSSb denote the residual sum of squares for the null and general

models, respectfully, and n is the total number of parameters. F has an F-

distribution with (b - q,n - b) degrees of freedom. The residual sum of squares

for a given model is defined as:
N db s

RSS "i -di
t=1

Values of F can be converted into the probability that the null hypothesis is true,

ic. that the extra parameters do no! result in a better fit. Then the quantity II -

prob(null hypothesis true)] is the significance level of the additional parameters.
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For SVD, the sequential F-test starts by testing the significance of a model

retaining one singular value against a model retaining no singular values, then

continues to test models retaining incrementally more singular values against tie

current null model. When a model has reached the 95% significance level

[chosen for this application] or higher, it becomes the null model against which

subsequent models are to be tested, until another model also reaches or surpasses

95% significance and takes its place. Figures 3.35-3.41 show the F-test results

for the geophysical and geochemical data sets and Table 3.5 lists the resulting

optimal p values. In general, it appears that the smoother functions [longer

wavelength] have higher numbers of significant singular values.

For determining the value of p, the three different methods agree quite

well (Table 3.5). The trade-off curves define the largest interval for p, which is

constrained further by the model rms/variance curves. For every data set,

except Ilitered gravity, the value of p determined by the F-test falls within the

chosen range of the model rms/variance curves. Even so, the F-test p value for

filtered gravity does not fall far outside the model rms/variance range [p = 29

compared to 251 and it does fall within the trade-off range. Since the F-test p

values are in agreement with the other methods and are by far the most objective

estimate from the three methods, these values will be used in calculating the

spherical harmonic coefficients.

Application. How weil the estimated spherical harmonic coefficients of

the constructed geophysical data sets correlate with the actual GEM-L2

coefficients is an indicator of how closely the estimated geochemistry coefficients

may he expected to approximate their true coefficients. Three sets of

geophysical SVD coefficient solutions are all correlated with the GEM-L2

coefficients: those that minimize the coefficient rms error and those that

minimize the model error iselected 1) valmc- from the F-testj for the filtered anI
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unfiltered data sets (Table 3.6). Remember that the data kernel matrices G for

gravity and gravity gradient are modified so that their spherical harmonic

coefficients are also estimates of the GEM-L2 coefficients. The correlation

coefficients rl are calculated as outlined above. Plots of r, versus degree include

confidence levels based upon a student's i-test. The test statistic for the t-test is:
T r1V7 -2 _ r1V2

where n is the number of coefficients at that particular degree 1(n - 2) = 21]. T

has a i-distribution with (ni - 2) or 2/ degrees of freedom. Given a desired

significance level and the degrees of freedom, the value of T can be looked up inI

a table. Then the vaiue that r, should have to achieve that significance level can

be calculated and plotted as confidence levels:

121 + T2

For the plots of r, versus 1, the geophysical coefficients estimated by

mininizing the coefficient rms error correlate better than those estimated by

minimizing the model error and, of those, the unfiltered data set co:relates better

than the filtered data set. All three sets of coefficients correlate well with the

actual GI-M-I.2 coefficients at degree 2, except for filtered gravity (Figs. 3.42-

-' .4. 1). In all cases, the gemid coefficient estimates correlate the best. In enc ra

gravity and gravity gradient correlate better at even degrees, with the exception

(if lie fillter,,d coc"iic ien,,s. F:< r tc mantle component coefficienls, all this

implies that the degree 2 coefficients are probably good, but beyond that there is

no guaranitee. Of th;e, four mantle component percentage data sets that are

expanded, tile i tiered ItiM[I data set is unique in that it most closely resembles

the geoid data st- ii the variimon-distance plots (Figs. 3.13 and 3.16). Thus,

there is a goo po"ssif ilit\ that it lea!st the degree 3 coefficients for this data set

incv rca t~onv Nelc a'., well.
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Correlation coefficients for the actual GEM-L2 coefficients and the

estimated coefficients cannot be calculated at degrees 0 and 1 because those

GEM-L2 coefficients are equal to zero. In contrast, the estimates of these

coefficients from the constructed geophysical data sets are all positive numbers

the same order of magnitude as the rest of the estimated coefficients. This

discrepancy is caused by a sampling bias due to the fact that the oceanic islands

are all hotspot related and hotspots are associated with geoid highs [Richards et

al., 1988]; no geoid lows are sampled to balance these highs. It is unclear how

this bias may affect the estimates of the other coefficients.

The continuous layer model degree 2 "functions" for the constructed geoid

data set and the mantle component percentages are reconstructed on a five degree

grid over the globe from 10 <0 170 and -180_<qp<180 using the calculated

coefficients and the appropriate equations (Figs. 3.45-3.49). It should be noted

that the contoured values are not actual geoid anomaly values or component

percentages, but are deviations from the average (degree 0] geoId anomnaly value

or component percentage [average constructed geoid = 13.7 m; average filtered

EMI = 0.27; average EMIl = 0.17; average filtered HIMU = 0.31; average DMM

= 0.251. For comparison, the actual degree 2 geoid is constructed in the same

way using the GEM-L2 coefficients laverage geoid = 0.0 m] (Fig. 3.50). The

constructed geoid field agrees well with the actual degree 2 geoid, as already

indicated by the correlation coefficients. For the mantle components, IIMU

resembles the actual geoid field with two essentially equatorial highs in

approximately the same locations: EMI and EMIl also have two highs that

undulate above and below the equator with a longitudinal shift of-3.5 to the east

with respect to the actual _coid [EMIl has less offset than EMIlj; and DMNI. with

its two highs and two low,-s resembles none of the other degree 2 expansions.
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Of all the mantle component data sets, filtered IlMU has the best chance

of getting reasonable values for the degree 3 coefficients. The , 2-3

function for filtered HItMU is reconstructed as before (Fig. 3.51). This can be

compared to the degrees 2-3 geoid reconstructed from the GEM-L2 coefficients

(Fig. 3.52).

SUMMARY

Viewing the distribution of the OIB reservoir as a continuous layer in the

mantle and using approximation methods to solve for the spherical harmonic

coefficients of its expansion reveals the following:

The mantle end-member component percentage data have a lot of short

wavelength energy relative to equally limited geoid, gravity and

gravity gradient control data sets.

With the currently available data, solving for the spherical harmonic

coefficients is a mixed-determined problem, requiring the use of

singular value decomposition ISVDI to get viable solutions.

* The F-tes! is a simple, objective way to determine the number of

singular values to retain in SVD for the statistically optimal solution.

With the current data coverage, only the degree 2 spherical harmonic

coefficients can be estimated with a reasonable level of confidence

using SVD.
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" Continuous layer model degree 2 HIMU closely resembles the degree 2

geoid.

* Continuous layer model degree 2 EMI and EMII resemble a longitude-

shifted, undulating degree 2 geoid.

* Continuous layer model degree 2 DMM does not resemble the degree 2

geoid or the degree 2 expansion of any other mantle component.
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Table 3.2. Separation of the GIB feature data set into 27 Dupal-type features and
9 DMM-type features, based upon the percentage of the DMM mantle
component.

Dupal-type Features %DMM

Gough 3.20
Shimada Seamount 6.01
Tristan de Cunha 6.70
San Felix/San Ambrosio 8.08

Walvis Ridge 11.80
Azores 13.74
Trinidade 14.84
Cook-Austral Islands 16.22
Tubuai-Austral Islands 16.93
New England Seamounts 17.00
Christmas 17.25
St. Helena 17.25
Kerguelen Plateau 17.39
Samoa Islands 18.88
Comores Archipelago 19.37
Fernando de Noronha 19.80

Marquesas Archipelago 20.72
Pitcairn 21.57
Cameroon Line 21.75
Sala Y Gomez 23.18
Society Ridge 23.31
Cape Verde Islands 26.06
Juan Fernandez Islands 26.63
Crozet Islands 27.34
Mascareignes 28.87
Amsterdam/St. Paul 29.20

l. Uisville Seamount Chin 31.84
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Table 3.2. Continued.

DMM-type Features %DMM

Balleny 32.17
Cocos 38.53

Marion/Prince Edward 40.88
Galapagos Islands 41.32
Ascenision 41.69
Ponape 46.14
Hawaiian Islands 47.18

IcelIand 52.81
Nunivak 58.73
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Table 3.4. Change in degree 2 spherical harmonic coefficients for the EMIl
percentage data and the geoid anomaly data as the data sets are expanded to
progressively higher degrees.

Expansions A 2  Al B2 A2  B2

Geoid

Degrees 0-2 -1.491E-05 -1.049E-06 -4.116E06 1.001E-05 -6.258E-06

Degrees 0-3 -1.51]E-05 2.881E-06 1.55 1E-06 6.610E-06 -8.569E-06

Degrees 0-4 -1.825E-05 -7.480E-06 3.639E-06 6.044E-()6 -1.108E-06

Degrees 0-5 3.946E-05 3.357E-05 -4.237E-04 -1.436E-04 -3.682E-06

EMIl

Deprees 0-2 -0.065243 -0.063197 0.269622 0 108911 -0.008334

Degrees 0-3 -0.076403 -0.203182 0.466347 0.148947 0.053770

Degrees 0-4 -0.170987 -0.221924 0.785142 0.167714 0.087842

Degrees 0-5 2.543222 10.864696 -30.064709 -20.805890 -10.644588
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TFable 3.6. Summary of correlation coefficients between the GEM-L2
coefficients and three sets of estimated geophysical coefficients that minimize the
coefficient rms error and that minimize the model error for filtered and
unfiltered data sets.

Data Set p Value Degree 2 Degree 3 Degree 4 Degree 5

Minimizing coefficient rms error

geoid 30 0.988 0.909 0.744 0.705
gravity 26 0.981 0.605 0.734 0.310
gravity gradient 14 0.926 0.399 0.457 -0.014

Minimizing model error (F-test) - unfiltered

geoid 25 0.988 0.863 0.726 -0.03 1
gravity 20 0.89 0.264 0.394 -0.145
gravity gradient 20 0.779 -0.084 0.543 0.085

Minimizing model error (F-test) - filtered

geoid 24 0.629 0.537 -0.256 0.016
gravity 29 0.356 0.723 -0.331 -0.333
gravity gradient 24 0.709 0.334 -0.720 -0.491
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Fig. 3.1. Variation-distance plot for the EMI mantle component showing the
range of variation in the component percentage with angular distance between
the feature locations. To account for the variation requires a minimum sampling
distance of - 14.50 [degree 12 expansion].
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the feature locations. To account for the variation requires a minimum sampling
distance of - 14.5' [degree 12 expansion].
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Fig. 3.4 Variation-distance plot for the DMM mantle component showing the
range of variation in the component percentage with angular distance between
the feature locations. To account for the variation requires a minimum sampling
distance of 570 [degree 3 expansion].
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F~ig. 3.7. Variation-distance plot for the EMI mantle component for the DUPAL
features only [<32% DMM], showing the range of variation in the component
percentage with angular distance between the feature locations. Using, the
DUPAL features only shows no reduction in the small-scale variation for the
EMI component.
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Fig. 3.8. Variation-distance plot for the EMII mantle component for the

DUPAL features only [<32% DMM], showing the range of variation in the
component percentage with angular distance between the feature locations.
Using the DUPAL features only shows no reduction in the small-scale variation
for the EMII component.
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Fig. 3.9. Variation -distance Plot for the HLMU mantle component for the
DUPAL features only [<32% DMM], showing the range of variation in the
component percentage with angular distance between the feature locations.
Using the DUPAL features only shows no reduction in the small-scale variation
for the HIMU component.
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component percentage with angular distance between the feature locations.
Using the DUPAL features only does show a reduction in the small-scale
variation for the DMM component, with an increase in minimum sampling
distance from - 570 to 89'.



113

Filtered EMI
0.2

o0

0.18 0 0 00
000

0.16 0 0 0

0 00(? 0

0.14 0 00 0 0 00
U0 0 

0 001 0 '0 0U 0 0
0

0 0.120 0o0
00 00.10 0 0 0

0 0 0 S 00 00 0 00.8o0 0 0 %°o 00 oo 0

0.1 0,9 0 0 o 00 0
0~ 0

0o 00 00  0 000
0 0 0

0 0 0 o 0 0 0 00 o

0 0 00 0 0 0
z.0 - 00O 6 000 00 *0 'o0'o 00

0 0 €0 O 0 00 
0

0 0 0 0

10 9 0001P 0 00 00 ID0o% 00 490
0.6-0 00 0 00 00 8 P0 9) 00 0

0 0 490 0 oo 00Oo o00o a

0 0 0 TO : 00(9 0000 &

0.0 0 .0C 0  0 o 
0

o V 0 0 o
'v ooO0 00 0 0

0.04- o o oO o% o C o,0 0 00 o00 000 o

000 00 0 0 o" 00.02 0 0 000 a 90 0 0 00

0 20 40 60 80 100 120 140 160 180

Angle (deg)

Fig. 3.11. Variation-distance plot for the filtered EMI data set, showing the
range of variation in the component percentage with angular distance after the
circular filter is applied. The result is a reduction in the small-scale variation,
with an increase in minimum sampling distance from - 14.5' to 37' [expansions
to degrees 12 and 5, respectively].
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Fig. 3.12. Variation-distance plot for the filtered EMIl data set, showing the
range of variation in the component percentage with angular distance after the
circular filter is applied. The result is an increase in the small-scale variation,
with a decrease in minimum sampling distance from - 390 to 27' [expansions to
degrees 4 and 7, respectively].
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Fig. 3.13. Variation -distance plot for the filtered HIMU data set, showing the
range of variation in the component percentage with angular distance after the
circular filter is applied. The result is a dramatic decrease in the small-scale
variation, with an increase in minimum sampling distance from -14.50 to 83'
[expansions to degrees 12 and 2, respectively].
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Fig. 3.14. Variation-distance plot for the filtered DMM data set, showing the
range of variation in the component percentage with angular distance after the
circular filter is applied. The result is a decrease in the small-scale variation,
with an increase in minimum sampling distance from - 57' to 1020 [expansions
to degrees 3 and 2, respectively].
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Fig. 3.16. Variation-distance plot for the constructed geoid data set showing the
range of variation in the geoid with angular distance between the feature
locations. To account for the variation requires a minimum sampling distance of
- 1020 [degree 2 expansion].
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Fig. 3.17. Variation-distance plot for the constructed gravity data set showing
the range of variation in gravity with angular distance between the feature
locations. To account for the variation requires a minimum sampling distance of
- 950 [degree 2 expansion].
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Fig. 3.18. Variation-distance plot for the constructed gravity gradient data set
showing the range of variation in the gravity gradient with angular distance

,between the feature locations. To account for the variation requires a minimum
sampling distance of- 670 [degree 3 expansion].



1 23

Filtered Geoid

0

60060- 0
60 0

000 8 0
o

50 8 0 0 o

50- 00" : 0 b 0 0 0

o o0 o 0o 0

0 0 0
0 o o  'o 0 0 0 00 0

0 0
3000 o 0 0 0 0

0 1 0 
000

0 0 0 o 0 " o

0 0 o 0 00 4fo° oo0
S o  

o 0 0 o o

o

2 0 00 0 00 1 o o o 0o o

00 o 0 00 o AO % 0

000 0000 0 00 0 40010 080 0 000 00 0

0 %0 o 0 0 0.0oo 0 o 0
00 00 00 0 coo

"0 0 0 o R o

006o 0o o o o

.0 o °0 o0 o oOo o 8? 0 0 ,( o

0 0 08 0 0 0 0 0 0 o 0 00 000

20 o 8 oo 0 0° oo % C, o 0

o o 80 0 °0
° 0 

O8
0 0 0;OB0 0 0 0. & - 0 10 .00 Ar

0 20 40 60 80 100 120 140 160 180

Angle (deg)

Fig. 3.19. Variation-distance plot for the filtered geoid dat set, showing the
range of variation in the geoid with angular distance after the circular filter is

applied. The filtered geoid data set retains essentially the sa'ie angular sampling
distance [- 93'1J
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Fig. 3.20. Variation-distance plot for the filtered gravity data set, showing the
range of variation in gravity with angular distance after the circular filter is
applied. The filtered gravity data set retains essentially the same angular
sampling distance [- 93°].
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Fig. 3.21. Variation-distance plot for the filtered gravity gradient data set,
showing the range of variation in the gravity gradient with angular distance after
the circular filter is applied. Filtering reduces the small-scale varition in the
gravity gradient data set, with an increase of angular sampling distance from -
67' to 77' [expansions to degrees 3 and 2, respectively].
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Fig. 3.22. Data kernel spectrums for the constructed geoid data kernel G.
Symbols for the different expansions: - = degrees 0-1, + = degrees 0-2, * =
degrees P -3, o = degrees 0-4, x = degrees 0-5. For the degrees 0-5 expansion,
the singular values approach zero, but there is no obvious cutoff value.
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Fig. 3.23. Data kernel spectrums for the constructed gravity data kernel G.
Symbols for the different expansions: • = degrees 0-1, + = degrees 0-2, * =
degrees 0-3, o = degrees 0-4, x = degrees 0-5. For the degrees 0-5 expansion,
the singular values approach zero, but there is no obvious cutoff value.



128

X1.4 4 Gravity Gradiien Data Kernel Spectrum
1.4,

12

X
K

. ~0.8 -0 X

00 o

~0.6 0

0 X

0.4 0 X
0 X

+* 0 0 0 X

0.2 + + 0 X
* + * 0

+ + 
0 X XX+ 0$ 0XX

0 "9 00.
01 . I + 0 0 X X X

0 5 10 15 20 25 30 35 40

Index

Fig. 3.24. Data kernel spectrums for the constructed gravity gradient data
kernel G. Symbols for the different expansions: • = degrees 0-1, + = degrees 0-
2, * = degrees 0-3, o = degrees 0-4, x = degrees 0-5. For the degrees 0-5
expansion, the singular values approach zero, but there is no obvious cutoff
value.
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Fig. 3.25. Data kernel spectrums for the mantle component data kernel G.
Symbols for the different expansions: -= degrees 0-1, + = degrees 0-2, * =
degrees 0-3, o = degrees 0-4, x = degrees 0-5. For the degrees 0-5 expansion,
the singular values approach zero, but there is no obvious cutoff value.
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Fig. 3.27. Trade-off curve between model variance and model resolution, as a
function of the number of singular values retained, for the constructed geoid data
set. Range forp that balances the two measures is: 15<_p<_30. Note that trade-
off curves are determined by the data kernel matrices and so are the same for
filtered and unfiltered data sets.
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Fig. 3.28. Trade-off curve between model variance and model resolution, as a
function of the number of singular values retained, for the constructed gravity
data set. Range forp that balances the two measures is: 9<_p< 2 9. Note that
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Fig. 3.29. Trade-off curve between model variance and model resolution, as a
function of the number of singular values retained, for the constructed gravity
gradient data set. Range for p that balances the two measures is: 8<p< 26 . Note
that trade-off curves are determined by the data kernel matrices and so are the
same for filtered and unfiltered data sets.
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Mantle Components
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Fig. 3.30. Trade-off curve between model variance and model resolution, as a
function of the number of singular values retained, for the mantle component
data set. Range for p that balances the two measures is: 15<p30. Note that
trade-off curves are determined by the data kernel matrices and so are the same
for filtered and unfiltered data sets.
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Geoid and Filtered Geoid
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Fig. 3.31. Plot of model root mean square error [rms error], as a function of
the number of singular values retained, between the observed geoid data and the
geoid data predicted from the calculated coefficients. Balancing the model rms
error and the model variance gives this range of p: 21<p<25 (filtered and
unfiltered). Line symbols: - = unfiltered model rms error, - - - - = filtered
model rms error, o-o- = model variance.
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Fig. 3.32. Plot of model root mean square error [rms error], as a function of
the number of singular values retained, between the observed gravity data and
the gravity data predicted from the calculated coefficients. Balancing the model
rms error and the model variance gives this range of p: 20<p<_2 5 (filtered and
unfiltered). Line symbols: -= unfiltered model rms error, - - - - = filtered
model rms error, o-o- = model variance.
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Fig. 3.33. Plot of model root mean square error [rms error], as a function of
the number of singular values retained, between the observed gravity gradient
data and the gravity gradient data predicted from the calculated coefficients.
Balancing the model rms error and the nodel variance gives this range for p:
20<_p<_25 (filtered and unfiltered). Line symbols: -= unfiltered model rms
error, - - - - -- filtered ,inodel rms error, o--o- = model variance.
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Fig. 3.34. Plot of model root mean square error [rms error], as a function of
the number of singular values retained, between the observed mantle component
data and the mantle component data predicted from the calculated coefficients.
Balancing the model rms error and the model variance gives this range for p:
165p_21 (filtered EMI), 16<p<20 (EMIl), 18 5p<2 3 (filtered HIMU), 19p<22
(DMM). Line symbols: = filtered EMI, - -- - = EMIl, = filtered
HIMU, - - DMM, o--o- = model variance.



139

Geoid and Filtered Geoid
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Fig. 3.35. Plot of F-test significance level as a function of the number of
singular values retained for the geoid and filtered geoid data sets. Basically, the
test determines whether additional parameters [singular values] make a
significant contribution to the model fit of the observed data values. Optimal p
values [for 95% significance] are: p = 25 [geoid] and p = 24 [filtered geoid].
Line symbols: = geoid, - - = filtered geoid, - --- = 95% significance
level.
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Fig. 3.36. Plot of F-test significance level as a function of the number of
singular values retained for the gravity and filtered gravity data sets. Basically,
the test determines whether additional parameters [singular values] make a
significant contribution to the model fit of the observed data values. Optimal p
values [for 95% significance] are: p = 20 [gravity] and p = 29 [filtered gravity].
Line symbols: = gravity, - - = filtered gravity, - - - - = 95%
significance level.
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Gravity Gradient and Filtered Gravity Gradient
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Fig. 3.37. Plot of F-test significance level as a function of the number of
singular values retained for the gravity gradient and filtered gravity gradient
data sets. Basically, the test determines whether additional parameters [singular
values] make a significant contribution to the model fit of the observed data
values. Optimal p values [for 95% significance] are: p = 20 [gravity gradient]
and p = 24 [filtered gravity gradient]. Line symbols: - gravity gradient,

- -. • filtered gravity gradient, ---- = 95% significance level.
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Fig. 3.38. Plot of F-test significance level as a function of the number of
singular values retained for the filtered EMI data set. Basically, the test
determines whether additional parameters [singular values] make a significant
contribution to the model fit of the observed data values. For filtered EMI, the
optimal p value [for 95% significance] is: p = 20. Line symbols: o--o = filtered
EMI, - - - - = 95% significance level.
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Fig. 3.39. Plot of F-test significance level as a function of the number of
singular values retained for the EMI data set. Basically, the test determines
whether additional parameters [singular values] make a significant contribution
to the model fit of the observed data values. For EMI, the optimal p value [for
95% significance] is: p = 16. Line symbols: o-o = EMI, - - - - = 95%
significance level.
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Fig. 3.40. Plot of F-test significance level as a function of the number of
singular values retained for the filtered HIMU data set. Basically, the test
determines whether additional parameters [singular values] make a significant
contribution to the model fit of the observed data values. For filtered HIMU, the
optimal p value [for 95% significance] is: p = 23. Line symbols: o--o = filtered
HIMU, - - - - = 95% significance level.
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Fig. 3.41. Plot of F-test significance level as a function of the number of
singular values retained for the DMM data set. Basically, the test determines
whether additional parameters [singular values] make a significant contribution
to the model fit of the observed data values. For DMM, the optimal p value [for
95% significance] is: p = 22. Line symbols: o-o = DMM, - - - - = 95%
significance level.
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Solutions Minimizing Coefficient RMS Error
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Fig. 3.42. Correlation of geophysics coefficient solutions, that minimize the
coefficient rms error, with the actual GEM-L2 coefficients. Line symbols: - - - -
= geoid ..... = gravity, - . - . = gravity gradient. Confidence levels are
determined by a t-test with 21 degrees of freedom.
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Solutions Minimizing Model RMS Error - Unfiltered

4.)4

0-8 -

, -----_99.5

•. 99

U 0.4-
0 ,

U 0.2-

0-

-0.2
2 3 4 5

Degree

Fig. 3.43. Correlation of geophysics coefficient solutions, that minimize the
model rms error for the unfiltered data, with the actual GEM-L2 coefficients.
Line symbols: - - - - = geoid ..... = gravity, - . - . = gravity gradient.
Confidence levels are determined by a t-test with 21 degrees of freedom.
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Solutions Minimizing Model RMS Error - Filtered
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Fig. 3.44. Correlation of geophysics coefficient solutions, that minimize the
model rms error for the filtered data, with the actual GEM-L2 coefficients.
Line symbols: - - - - = geoid,.... = gravity, - . - . = gravity gradient.
Confidence levels are determined by a t-test with 21 degrees of freedom.
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CHAPTER 4

SPHERICAL HARMONIC REPRESENTATION OF ISOTOPIC
SIGNATURES: TIE DELTA-FUNCTION MODEL

INTRODUCTION

As mentioned in Chapter 3, the delta-function model represents the OIB

reservoir as a series of point sources, each feeding a separate plume. This may

seem unphysical, but could be a good approximation of actual conditions if the

source boundary layer is not continous, but patchy, as indicated in some seismic

studies of D" (Lay et al., 1990).

Representing the geographic features as delta-functions [scaled by the

corresponding geoid anomaly or mantle component percentage] has two

advantages, mathematically, over the approximation methods used in Chapter 3.

First, the spherical harmonic coefficients can be found easily with the

simplification from integration over the globe to summation over the feature

locations allowed by the delta-functions. Second, representing the OIB reservoir

as a known function removes the problem of aliasi.,; the values of the spherical

harmonic coefficients are not dependent upon the truncation point of the

expansion [they are dependent upon the number and location of the geographic

features]. For delta-functions, which have energy at all degrees, the expansions

can be carried out to infinity, but for this study, will only be carried out to

degree 5, for comparison with rhe continuous layer model.

THtEORY

As before, any function f(O,p) can be expanded in spherical harmonics:

L. I r__1+- __ -~ ,,,
..... .Icos0 +

/H) re=i )
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Due to the orthogonality of the spherical harmonics, the equations for the

coefficients are:

=f. f'o /(V 4(l+ni)! F'(cosO) cosrnp d(cosO)

B f d ) 0 (2l+)(l-m)! I(cosO) sinm(p d(cosO)

For the delta-function model, the function being expanded is a series of delta-

functions:

/(O,(p) = ki(O-Oi,pq,(i)

where ki is one of the four mantle component percentages [or the value of the

geoid anomalyl and fO-Oi,p-PL) indicates a delta-function at the particular

location (Oipi). Mathematically, the delta-function is a "spike" of infinite height,

infinitesimal width and unit area:

f dpfJ8(O-Oi,-pi) dO=

The key property of the delta-function is that the integral of a function g(O,(p)

times a delta-function is just the value of g at the delta-function location:

f dpf g(O,(p) -Oi)d=g(Oi,(pi)

This simplifies the coefficient equations from integration over the globe to

summation over the geographic feature locations:

N
A k. (214) P"(cosOi) cosnq1i

t=1l 4m(I+m)!
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N N 21+ 1)(1-m)!
Bm = ( " ki) n(cos0i) sinmqpi

j=I 4ic(l±m)!

The coefficient equations for the constructed data sets of geoid, gravity

and gravity gradient anomalies at the feature locations have additional factors.

As an example, for gravity the equations are:

A7Z- R2 U ,, / (2 1+1)(l-m)! s
Gm~~l i=Iki- Pl (C°Soi) cOsm(Pi

B"- R (21+1)(1-m)! :7(cosOi) sinrn~

R2

with the additional factor of GM(1+1). Geoid and gravity gradient additional

1 R3
factors are R and GM(l+I)(l+2), respectively.

APPLICATION

As before, the constructed geophysics data sets are used as a control to

gauge the level of accuracy expected from the mantle component data sets.

Correlating the coefficients from these data sets with the GEM-L2 coefficients

(Fig. 4.1) yields good agreement for all three at degree 2. Whereas the

continuous layer model showed a fairly consistent pattern of decreasing

correlation from the geoid coefficient estimates to the gravity and gravity

gradient estimates (Fig. 3.43), the delta-function model shows equal correlation

at degree 2 and a switch to increasing correlation from the Peoid estimales to the

gravity and gra vity gradient estimates at degree 4. Overall, it appears hat the
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delta-function model is less accurate at reproducing the coefficients for long

wavelength data sets Igeoid] and more accurate at reproducing the coefficients

for the short wavelength data sets [gravity gradient] than the continuous layer

model. Both models are consistent, though, in showing strong correlation for all

three data sets at degree 2, implying that the mantle component degree 2

coefficients are also viable. In addition, the mantle component data sets have

even more high degree [short wavelength] energy than the gravity gradient data

set, so their coefficients are probably reasonably accurate out to degree 4.

Since each of the different geophysics data sets approximate tile GEM-L2

coefficients equally well at degree 2, it appears that there is some additional

controlling factor affecting the estimates of the degree 2 coefficients, aside from

the data values themselves. The location of the features, and thus the delta-

functions, is the most likely candidate. A plot of the constructed degree 2

"function" for the delta-function model geoid (Fig. 4.2) shows the obvious

relationship between the two main clusters of oceanic islands and the two highs in

the geoid. Since the continuous layer model geophysics coefficients all agreed

well with the degree 2 GEM-L2 coefficients, it appears that the location effect

merely enhances an already existing correlation and is not solely responsible for

the correlation. Presumably the same is true of any degree 2 correlation of

delta-function model geochemistry coefficients with the GEM-L2 coefficients.

Degree 2 "functions" for tile mantle component percentages are

reconstructed, as before, for comparison with those of the continuous layer

model (Figs. 4.3-4.6). The contoured values of the delta-fuction geoid (Fig. 4.2)

and the mantle component functions are large enough to be the actual geoid and

component percentages, instead of deviations from the average values, as for the

continuous laver model. This is due to the arbitrary scaling that comes into play
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when using delta-functions. A delta-function has unit area, so the average value

of a delta-function over the sphere is:

(5= 1 _ 1

(A(p sin0) AO 4t

where (Aqp sinO) AO is a sectional area on the sphere (Fig. 4.7), which for the

whole sphere is 47t. If there is only one delta-function involved in the

reconstruction, the contoured values will be off by a factor of 1/(4mt). Since

there are 36 features, there are 36 delta-functions involved in the reconstruction,

so the contoured values are off by a factor of 36/(47t) = 2.86 or -3.

Qualitatively, the four reconstructed mantle component degree 2 functions

show good agreement with each other. All four have two highs: one over central

Africa and the other over the central Pacific. Slight differences include the

width of the highs [from narrowest to widest width: HIMU, EMI, EMIl and

DMM] and the amount of displacement [from 0' to 1501 of the highs above and

below the equator [from least to most displacement: HIMU, EMIl, EMI and

DMM]. With respect to the GEM-L2 degree 2 geoid (Fig. 3.50), all of the

mantle component highs are shifted longitudinally to the east by varying amounts

[HIMU -30, EMI -30', EMIl -350 and DMM -40].

Degrees 2-3 functions for the four components (Figs. 4.8-4.11) are

constructed for comparison with the geoid (Fig. 5.32) and the HIMU continuous

layer model reconstruction (Fig. 5.31).

SUMMARY

Viewing the distribution of the OIB reservoir as a series of point sources

that can be represented as delta-functions yields the following results:
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" With respect to the behavior of geophysics control data sets, at least the

degree 2 spherical harmonic coefficients for the mantle components

can be estimated with confidence, if not the degrees 3 and 4 as well.

* The location of the features, and thus the delta-functions, biases the

calculated degree 2 coefficients due to the correlation between the

oceanic island locations and the degree 2 geoid.

" Scaling of delta-function models reconstructed over the globe is

dependent upon the number of delta-functions used in the

approximation [NI and varies as N/(4nr).

0 Degree 2 HIMU, EMI, EMIJ and DMM all show a degree 2 geoid

pattern phase-shifted 300-400 to the east, with varying widths of the

highs and displacements from the equator.
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Delta-Function Model Geophysics Correlation with GEM-L2
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Fig. 4.1. Correlation of the delta-function model geophysics coefficient solutions
with the actual GEM-L2 coefficients. Line symbols: - - - - = geoid ..... =
gravity, - . - . = gravity gradient. Confidence levels are determined by a t-test
with 21 degrees of freedom.
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CHAPTER 5

RESULTS AND DISCUSSION

INTRODUCTION

Geophysical control data sets are used to judge the dependability of

spherical harmonic coefficient solutions for the mantle end-member components

from the continuous layer and the delta-function models. A careful comparison

of thle two models can further enhance or reduce the significance assigned to the

various solutions. In this chapter, the two models are compared in terms of their

amplitude spectra, how well they correlate with the geoid, how they are affected

by nonuniform feature distribution and how well they correlate with the

Clayton-Comer seismic tomography model. The significance of the correlations

with the geoid and the seismic tomography model is discussed, along with

suggestions for further research.

AMPLITUDE SPECTRA

Spectral amplitude plots show the relative power at each degree for the

different mantle component expansions. Following Richards and Hager (1988),

the root mean square harmonic coefficient amplitude at each degree is given by:

(V21 +1) - 21 B1)1
2(21+

where V1 is the variance at each degree for a given set of harmonic coefficients.

Richards and Hager (1988) include the factor of 1/(21 + 1) because random noise

on a sphere will have a flat spectrum with this normalization. On plots of
Ms versus 1, low-degree or long-wavelength effects will show up as a negative

slope.
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Amplitude spectra of the calculated geoid coefficients from the two

models agree well with tile negative [long-wavelength] slope of the actual geoid

coefficients (Figs. 5.1 and 5.2). For the mantle component expansions,

amplitude spectra reveal no such clear cut negative slope pattern to indicatc

dominant long-wavelength effects (Figs. 5.3 and 5.4). Instead, the spectra appear

"white", with energy at all degrees, and no decrease in the energy with

increasing degree. In addition, HIMU is the only mantle component that shows

any consistencv in behavior between the two models. Thus, in general. the

expansion of the mantle components is model dei,-'2ndent.

CORRELATION WTIH THE GEOID

IPlotting the mantle (nmpcnent percentages point by point against the full

geoid value at the geographic feature locations is not a valid way to compare the

mantle component signatures with the geoid. When correlating them by degree

using spherical harmonic coefficients, it is apparent that the mantle components

may correlate with the geoid at some degrees [wavelengths] and not others. In a

pointwise comparison, the different patterns at the different degrees are

obscured as they are added together to produce the whole, making an accurate

comparison impossible. Pointwise plots done with the current data show no

correlation between the mantle components and the geoid (Figs. 5.5-5.8).

In contriast. correlating the geold coefficients and the mantle comnponen,

coefficients by degree reveals a good corrrelation 190% significance level and

higher] at degree 2 for the DUPAL components [EMI, EMIl and HIMUI for both

models (Figs. 5.9 and 5.10). Note that positive correlations indicate high

concentrations of mantle components correlating with geoid highs and vice versa.

-IIMU has the best correlation for both models, showing bettc- tan 95%

significance at degree 2 and 90% significance at degree 3. The remaining mantle
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components show a consistent decreasing correlation from EMIl to EMI to

DMM for both models.

IMPLICATIONS OF NONUNIFORM FEATURE DISTRIBUTION

Oceanic island distribution is not uniform about the globe. As indicated in

Chapter 4, the two main clusters of oceanic islands correspond to the two highq

of the degree 2 geoid. It can be argued, then, that any correlation between the

degree 2 mantle component expansions and the degree 2 geoid is due solely to the

nonuniform distribution of the oceanic islands and not to any pattern in the

geochemistry values. To test this, the percentages of the HIMU mantle

component at the 36 geographic features, filtered [continuous layer model I and

unfiltered [delta-function model], are randomly assigned to different feature

locations five times. HIMU percentages are used since the degree 2 HIMU, for

both models, correlates best with the degree 2 geold. The five randomly

generated data sets for each model are then used to compute new coefficients that

can be compared to the degree 2 geoid. For the continuous layer model, the

number of singular values retained for the new data sets is determined by the F-

test at the 95% significance level. The random number generator used for this

test is nonlinear, but repeatable, since it starts with a given seed that is updated

for successive calls in a predictable manner. This means that for a given

randomization, the filtered and unfiltered HIMU percentages are being

randomized in the same way, so the results of the two models can be compared.

Five iterations is not enough to quantify the effect of the feature distribution on

the degree 2 correlation for the two models, but it is enough to indicate if it has

any control at all.

Concentrating on the degree 2 coefficients, three of the randomizations

that result in strong correlations with the geoid for delta-function model Iwell
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above tile 90% confidence level] result in negligible correlations with tile geoid

for the continuous layer model ('Fable 5.1). Reconstructed degree 2 functions of

the randomized data sets show graphically how little the delta-function model

changes, with respect to the continuous layer model, when the geochemical

signatures of the features are mixed up (Figs. 5.11-5.20). For the delta-function

model, this indicates that the values of coefficients are not so much dependent

upon the scaling factors multiplying the delta-functions as the location of the

delta-functions themselves. This location effect makes it difficult to trust strong

correlations of the delta-function model with the geoid unless there is additional

con'irmation by the continuous laver model.

CORRELATION WITH SEISMIC TOMOGRAPHY

Correlating the mantle component expansions with the geoid gives an

estimate of the general OIB source region lie. lower mantle versus upper

mantle], but is incapable of resolving a more precise depth range for the source

since the geoid is affected by mass anomalies at all depths in the Earth. A way to

select a probable depth range for the OIB sourcels] is to compare the mantle

component expansions to seismic tomography models. Seismic tomography

models map the global distribution of lateral velocity variations in the mantle at

different depths based upon the inversion of travel time anomaly data from

.,eismic waves that travel through the Earth's interior (-ager and Clayton, 1909).

In this study, the mantle component expansions are correlated with the

Clayton-Comer seismic tomography model, discussed in Hager and Clayton

(1989). The Clayton-Comer model inverts for slowness [inverse of velocityl

anomalies, in a given shell, that are converted to velocity anomalies by

multiplying by the average shell velocity. There are 29 shells in the model, each

100 km thick, spanning the entire mantle from the core-mantle boundary ICM3I,
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at a depth of 2900 kin, to the surface. Shells 23-29 [covering the uppper mantlel

are not used in this analysis since coverage in the top 700 km of the mantle is

poor because of the near vertical seismic ray paths in this region. The spherical

harmonic coefficients of the remaining 22 shells 1covering the lower mantlel are

averaged together, to dampen model noise, to produce 5 layers: 2900-25X) km

[layer 1], 2500-2100 km [layer 2], 2100-1700 km [layer 31, 1700-1200 km [layer

4] and 1200-700 km [layer 51.

The ecoid is correlated with the Clayton-Comer tomography model first

(Fig. 5.2 to serve as a guide for interpreting the correlation of the tomography

model with the mantle component expansions. Note that a negative correlation

indicates geoid highs correlating with low velocity regions [and vice versal and a

positive correlation indicates geoid highs correlating with high velocity regions

land vice versal. In layers 1-3, the strong negative correlations at degrees 2 and

3 confirm that long wavelength geoid highs are due to low density warmer and

thus slower velocity] mantle up,.vellings. This long wavelength upwelling

signature is also present in the upper lower mantle, as shown by the strong

negative correlations at degrees 2, 3 and 4 for layer 4 and at degree 2 for layer

5. Of interest is the strong positive correlations for layers 4 and 5. at degree 5

and degrees 4 and 5, respectively. Bowin (1991 a) indicates the correspondence

of the degrees 4-10 geoid highs with plate convergence zones. He believes that

tile mass anomalies responsible for the highs lie in the lower mantle, beneath

plate convergence zones, below the teleseismically downgoing subducted slabs.

The positive correlations in layers 4 and 5 support this theory and imply that

subducted slabs extend below the 670 km discontinuity.

Correlation of the mantle component expansions with the Clayton-Comer

tomography layers for the two models yields interesting results (Figs. 5.22-

5.29). Due to the limitations of both models fie. the uncertainties in the
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coefficient estimates for the continuous layer model and the location dependence

in the delta-function model], it is more likely that a significant correlation is

accurate if it is present in both models. With this in mind, the interpretation of

the correlation results will be based upon common correlations of 90%

significance [or very close to it] or higher (Table 5.2).

The common degree 2 correlations with layers 3-5 for all the mantle

components are indicative of large scale upwelling, as for the geoid. Good

degree 3 correlations with layer I points to a deep source for all four

components, like the geoid which shows a much stronger correlation at degree 3

with layer I than it does at degree 2. This correlation is not unexpected for the

DUPAL components, whose correlation with the degree 2 geoid also suggest a

deep origin, but it is surprising for the DMM component. There are two

pocsible solutions for the dilemma posed by the supposedly upper mantle DMM

component correlating with deep mantle tomography. First, it is possible that

the DMM component expansion does correlate better with upper mantle

tomography, which is, unfortunately, not available for the Clayton-Comer

model. Second, it is possible that the DMM component is representative of both

the upper and lower mantle composition. Hart (1991) shows that all the hotspots

that have elongated isotopic arrays indicate mixing between one of the DUPAL

components and something that is not a MORB composition. Since 3/4 of a

piume's ascent is spent in the lower mantle, the composition of the DMM

component may be largely controlled by lower mantle entrainment (Hart, 1991).

Another interesting correlation common to both models is the positive

correlation at degree 5 for EMII in layer 5. With respect to Bowen's model

(1991 a) this indicates a correlation between the EMIl component and subducted

slabs. This finding agrees with the geochemical evidence suggesting the EMIl

component is derived from recycling of subducted sediments (Hart, 1988).
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DISCUSSION

As indicated in Chapter 3, the average value of the geoid anomaly at the

36 feature locations is 13.7 m, not zero as it should be if the features were

located randomly with respect to the geoid. This is a simple indication that the

feature locations [hotspots] correlate with geoid highs. Naturally, then, the bulk

chemical signatures unique to oceanic island basalts shoild also correlate with

geoid highs. What is significant is that the expansions of all three DUPAL

mantle end-member components [EMI, EMIl and HIMU], that comprise 3/4 of

the bulk chemical signature, individually correlate with geoid highs. More

importantly, the DUPAL components correlate with the degree 2 geoid highs,

indicating a deep origin for the components since the degrees 2-3 geoid field i1

inferred to result from topography at the core-mantle boundary (Bowen, 1991a).

It can be argued that the correlation of the DUPAL components with the

degree 2 geoid is not an indication of geochemical patterns within the earth, but a

direct result of the nonuniform distribution of the oceanic islands, whose two

largest population densities correspond to the degree 2 geoid highs.

Randomization tests indicate, however, that while this nonuniform distribution

does play a role in solutions for the delta-function model, it is not the controlling

factor for continuous layer model solutions. Though the continuous layer model

solutions are hindered by the limited number and coverage of the oceanic islands

and the delta-function model solutions are biased by the oceanic island locations,

continual comparisons of the two models can be used to judge the accuracy of the

solutions [in addition to judging accuracy using geophysical control sets].

Essentially, where both models agree, the solutions are more likely to be

accurate.
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The total scold field is due to tile contribution of different mass anomalies

at different depths throughout the Earth, so it can be difficult to directly

ascertain a source depth by comparing geochemical quantities with tile seold.

Seismic tomography models allow the correlation of geochernical quantities with

seismic velocity anomalies at different depths and serve as an independent check

on the general source locations indicated by correlation with geoid anomalies.

Correlating the mantle end-member components from both models with the

Clavton-Conicr seismic tomography model suggests a source depth range of

2500-290t) km .just above the core-mantle boundary] for the I)UPAIL

componcnts, due to the strong negative degree 3 correlations at this depth. In

addition, a strong, positive degree 5 correlation in tie depth range of 700- 1200

km is an indication that the EMIlI component is related to subduction, as

previously suggested using geochemical evidence (Hart, 1988). Similarly, the

geoid shows a strong positive correlation with the Clayton-Comer model at

degrees 4 and 5 in the depth range 700-1200 km and at degree 5 in the depth

ranges of 1200-1700 km. These subduction related patterns in the upper lower

mantle indicate that subducted slabs extend beyond the 670 km seismic

diV,,!:tinuitv and ihus are supporting evidence for whole mantle convection

Further comparisons need to be made between the mantle component

expansions and other seismic tomography models. It is especially important to
c , iparc th~e mantle components to a high resolution upper mantle tomography

model, since the amplitude spectra for the components indicate power at high

degrees which will become dominant at shallow depths in the mantle. Such a

comparision could clarify the nature of the DMM component, which correlates

,ell with the degree 3 deep mantle layer of the Clayton-Conmer model, and could

further explore the relationship between the EMIl component and subduction.



203

SUMMARY

A comparison of the two models used to expand the mantle components in

spherical harmonics yields the following results:

" Mantle end-member component amplitude spectra, for the continuous

laver model and the delta-function model, show power at all degrees,

with no one degree dominating.

" The DUPAL components IEMI, EMIl and HIMU) for both models

correlate well with the geoid at degree 2, indicating a deep origin.

Delta-function model solutions are, to some extent, controlled by the

nonuniform feature distribution, while the continuous layer model

solutions are not.

" The DUPAL and DMM components, for both models, correlate well

Inegativelv] at degrce 3 with the velocity anomalies of the Clayton-

Comer seismic tomography model in the 2500-2900 km depth range

(Immediately above the core-mantle boundaryl.

" The EMIl component, for both models, correlates well [positivelyl at

degree 5 with the velocity anomalies of the Clayton-Comer seismic

tomography model in the 700-1200 km depth range, indicating a

sulbtiction related origin.

" Subduction related positive correlations for the geoid and the EMIl

component with the Clayton-Comer model in the upper lower mantle
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seismic discontinuity, supporting a whole-mantle cone\'ctio modcl.



205

Table 5. 1. Summary of correlation coefficients between the GENI-I-2
coelticients and coefficients calcuk ted from five randomly generated data sets
for the continuous layer model Ifiltcred HIMUJ and the delta-function model
I ll,% 1. along with the actual corrcia t ions of the fiitered IIMU and III t I datt
C t S.

Data Sci Degree 2 Degree 3 Degree 4 )egree 5

Continuous Laver Model

filtered I IIM1I.J 0.752 0.502 -0. 112 -. 3 5,

random I 0.753 0.446 -0.639 .0. 157
randd()n 2 0.560 0. 1 90 0.467 ().2 I()
rand . -0. 129 0.4 32 -0.303 -().( )9
rad -, 0(225 0.448 0.386 -().

raid(m 5 -0. 166 0.718 -0.285 -)0 (

I)elta-I:u netion Model

I IIMI. 0.850 0.491 0.063 -0.505

random 1 0.726 0.332 0.036 -0.416
random 2 0.622 0.404 0. 107 -0.361
random 3 0.873 0.477 0.029 -0.320
random 1 0.893 0.407 0.415 -0.385
random 5 0.761 0.383 0. 107 -0.286
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Slal .2. Summary of correlations of 90%/. significance [or "cry close to it] or
higher for the continuous layer model and the delta-function model when
correlated wihfive averaged layers in the Clayton-Corner tomography model.
JA "+" or %"next to the component name indicates a positivc or negative
correlation, respectively. I

Deg~ree 2 D~egree 3 Degree 4 D~egree 5

LaNe r 5 -EMIT + E N I I
-I II Mv U1

Layer 4 -EMIlI
-DMM1

-EMI
Layer 3 -EMIT1

Layer 2 -DMM 2  -EM IlI

-EMI1  -EMI
[ayer I -EMIT I -EM 1

-HIMU
-DMM -DMM

'The continuous layer model correlation is slightly less than 90% significant.
2 The delta-function model correlation is slighl les tha 9%sgiicant.
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X10-6  Continuous Layer Model Geoid
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Fig. 5. 1. Amplitude spectra for the continuous layer model coefficients of the
constructed geoid data set, as compared t~o the actual geoid. Line symbols: - -- -

-constructed geoid. GEM-L-2 geoid.
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x10 5  Delta-Function Model Geoid

-------------------- ----------------------

0
12 34 5

Degree

Fig. 5.2. Amplitude spectra for the delta-function model coefficients of the
constructed geoid data set, as compared to the actual geoid. Line symbols: ----

constructed geoid, GEM-L2 geoid.
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Continuous Layer Model Mantle Components0 .2 r ,.
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Fig. 5.3. Amplitude spectra for the continuous layer model coefficients of the
mantle component data sets. Line symbols: -filtered EMI, -

EMIl,-- filtered HIMU, - -. DMM.
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Delta-Function Model Mantle Components
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Fig. 5.4. Amplitude spectra for the delta-function model coefficients of the
mantle component data sets. Line symbols: =EMI, - -- =EMIl,

HIMIJ,- - DMM.
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Fig. 5.5. Pointwise comparison, at each geographic feature, of the full geoid
anomaly [in meters] with the EMI component percentage. This plot gives the
impression that there is no correlation.
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Fig. 5.6. Pointwise comparison, at each geographic feature, of the full geoid
anomaly [in meters] with the EMII component percentage. This plot gives the
impression that there is no correlation.
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Fig. 5.7. Pointwise comparison, at each geographic feature, of the full geoid
anomaly [in meters] with the HIMU component percentage. This plot gives the
impression that there is no correlation.
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Fig. 5.8. Pointwise comparison, at each geographic feature, of the full geoid
anomaly (in meters] with the DMM component percentage. This plot gives the
impression that there is no correlation.
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Continuous Layer Model Mantle Components Correlation with GEM-L2
O .S -- ---. .-- ----- -- -
0.6
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Fig. 5.9. Correlation of the continuous layer model mantle component
coefficient solutions with the GEM-L2 geoid coefficients. Line symbols: ---
filtered EMI, - - --- EMil, .'-" filtered HIMU, - -. = DMM. Confidence
levels are determined by a t-test with 21 degrees of freedom.
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Iilta iFunction Model Mantle Components Correlation with GEM-1L2
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Fig. 5.10. Correlation of the delta-function model mantle component coefficient
solutions with the GEM-L_2 geoid coefficients. Line symbols: -= EMI, - - -

-EMII,~ - HIMU, - - DMM. Confidence levels are determined by a
t-test with 21 degrees of freedom.
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Correlation of Geoid with Clavt on- Coiner Model
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Continuous Layer Model EMI Correlated with Clayton-Comer Model
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Fig. 5.22. Correlation of the continuous layer model filtered EMI coefficients
with the five layers of the Clayton-Comer seismic tomography model. Line
symbols: = layer 1 [2500-2900 kml, - - - - = layer 2 [2100-2500 kmII,
" = layer 3 [1700-2100 km], - - - - = layer 4 [1200-1700 km], o-o = layer 5
[700-1200 km]. Confidence levels are determined by a t-test with 21 degrees of
freedom.
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Continuous Layer Model EMIl Correlated with Clayton-Comer Model
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Fig. 5.23. Correlation of the continuous layer model EMIl coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:

-= layer 1 [2500-2900 kmJ, - - - - = layer 2 [2100-2500 km], .... = layer

3 [1700-2100 km, - - - = layer 4 [1200-1700 km], o-o = layer 5 [700-1200

km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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Continuous Layer Model HIMAU Correlated with Clayton-Comer Model
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Fig. 5.24. Correlation of the continuous layer model filtered HIMU coefficients
with the five layers of the Clayton-Comer seismic tomography model. Line
symbols: = layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km],-
-= layer 3 [1700-2100 km], - - = layer 4 [1200-1700 km], o-o = layer 5
[700-1200 km]. Confidence levels are determined by a t-test with 21 degrees of
freedom.
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Continuous Layer Model DMM Correlated with Clayton-Comer Model
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Fig. 5.25. Correlation of the continuous layer model DMM coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:

__ = layer 1 [2500-2900 km], - - - - = layer 2 [2100-2500 km,- --- = layer
3 [1700-2100 km], - ---= layer 4 11200-1700 km], o-o = layer 5 [700-1200
km). Confidence levels are determined by a t-test with 2/ degrees of freedom.
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Delta-Function Model EMI Correlated with Clayton-Comer Model
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Fig. 5.26. Correlation of the delta-function model EMI coefficients with the five
layers of the Clayton-Comer seismic tomography model. Line symbols: =
layer ! [2500-2900 kin], - - - - = layer 2 [2100-2500 km], -- - = layer 3 [1700-
2100 km], - --• = layer 4 [1200-1700 km], o--o = layer 5 [700-1200 kin].
Confidence levels are determined by a t-test with 21 degrees of freedom.
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Delta-Function Model EMIL Correlated with Clayton-Comer Model
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Fig. 5.27. Correlation of the delta-function model EMIl :oefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:

!aver 1 [2500-2900 kin, - - - - = layer 2 [2100-2500 km], """ = layer

3 11700-2100 km], - - - • = layer 4 [1200-1700 km], o-o = layer 5 [700-1200
km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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Delta-Function Model HIMU Correlated with Clayton-Comer Model
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Fig. 5.28. Correlation of the delta-function model HIMIU coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:

.. lae r I 12500-2900 km], - - - - = layer 2 [2100-2500 kn], "" = layer
3 11700-2100 km], - = layer 4 [1200-1700 km]', o-o = layer 5 [700-1200
km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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Delta-Function Model DMIM Correlated with Clayton-Corner Model
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Fig. 5.29. Correlation of the delta-function model DMM coefficients with the
five layers of the Clayton-Comer seismic tomography model. Line symbols:
-- -- laver 1 [2500-2900 kmJ, - - -- = layer 2 12100-2500 kin], --- " = layer
3 11700-2100 km], - - - - = layer 4 [1200-1700 km], o-o = layer 5 [700-1200
km]. Confidence levels are determined by a t-test with 21 degrees of freedom.
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